Separable deformations of group algebras: The Donald-Flanigan Conjecture

Ariel Amsalem
Advisor: Yuval Ginosar
University of Haifa
Blankenberge
June 20, 2023

Can a group algebra $k G$ always be deformed to a separable algebra?

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)
The group algebra $k G$ is k-separable iff the order of G is invertible in k

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)
The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where $\operatorname{char}(k)$ does divide $|G|$, can $k G$ still be deformed into a separable algebra?

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where $\operatorname{char}(k)$ does divide $|G|$, can $k G$ still be deformed into a separable algebra?
That is:

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where $\operatorname{char}(k)$ does divide $|G|$, can $k G$ still be deformed into a separable algebra?
That is:

Question

Does there exist a $k\left[[t]\right.$-algebra $[k G]_{t}$ with $[k G]_{t} /\langle t\rangle \cong k G$, such that the scalar extension $(k G)_{t}:=k((t)) \otimes_{k[t]]}[k G]_{t}$ is $k((t))$-separable?

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where $\operatorname{char}(k)$ does divide $|G|$, can $k G$ still be deformed into a separable algebra?
That is:

Question

Does there exist a $k\left[[t]\right.$-algebra $[k G]_{t}$ with $[k G]_{t} /\langle t\rangle \cong k G$, such that the scalar extension $(k G)_{t}:=k((t)) \otimes_{k[t t]}[k G]_{t}$ is $k((t))$-separable?

Here, $k[[t]]$ is the ring of laurent series of elements in k, and $k((t))$ is it's field of fractions.

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where $\operatorname{char}(k)$ does divide $|G|$, can $k G$ still be deformed into a separable algebra?
That is:

Question

Does there exist a $k\left[[t]\right.$-algebra $[k G]_{t}$ with $[k G]_{t} /\langle t\rangle \cong k G$, such that the scalar extension $(k G)_{t}:=k((t)) \otimes_{k[t t]}[k G]_{t}$ is $k((t))$-separable?

Here, $k[[t]]$ is the ring of laurent series of elements in k, and $k((t))$ is it's field of fractions.

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where char (k) does divide $|G|$, can $k G$ still be deformed into a separable algebra?
That is:

Question

Does there exist a $k\left[[t]\right.$-algebra $[k G]_{t}$ with $[k G]_{t} /\langle t\rangle \cong k G$, such that the scalar extension $(k G)_{t}:=k((t)) \otimes_{k[t t]}[k G]_{t}$ is $k((t))$-separable?

Given a field k and a finite group G, Maschke's well-known theorem asserts the following:

Theorem (H. Maschke)

The group algebra $k G$ is k-separable iff the order of G is invertible in k (by separable, we mean that $\bar{k} \otimes_{k}(k G)$ is semisimple).

In the modular case, that is where $\operatorname{char}(k)$ does divide $|G|$, can $k G$ still be deformed into a separable algebra?
That is:

Question

Does there exist a $k\left[[t]\right.$-algebra $[k G]_{t}$ with $[k G]_{t} /\langle t\rangle \cong k G$, such that the scalar extension $(k G)_{t}:=k((t)) \otimes_{k[t]]}[k G]_{t}$ is $k((t))$-separable?

The [DF] Conjecture

The [DF] Conjecture asserts that this 50 years old open question has a positive answer.

Consider the next example:

Consider the next example:

Let C_{n} be a cyclic group of order n and let k be a field.

Consider the next example:
Let C_{n} be a cyclic group of order n and let k be a field. Note that we have an isomorphism

$$
k C_{n} \cong k[x] /\left\langle x^{n}-1\right\rangle .
$$

Consider the next example:
Let C_{n} be a cyclic group of order n and let k be a field. Note that we have an isomorphism

$$
k C_{n} \cong k[x] /\left\langle x^{n}-1\right\rangle
$$

One can show that

$$
\left(k C_{n}\right)_{t}:=k((t))[x] /\left\langle x^{n}-t x-1\right\rangle
$$

is a separable deformation of $k C_{n}$.

What is known so far

What is known so far

Given separable deformations $\left(k G_{1}\right)_{t}$ and $\left(k G_{2}\right)_{t}$ of some group algebras $k G_{1}$ and $k G_{2}$ respectively, the algebra $\left(k G_{1}\right)_{t} \otimes_{k((t))}\left(k G_{2}\right)_{t}$ is a separable deformation of $k\left(G_{1} \times G_{2}\right)$.

What is known so far

Given separable deformations $\left(k G_{1}\right)_{t}$ and $\left(k G_{2}\right)_{t}$ of some group algebras $k G_{1}$ and $k G_{2}$ respectively, the algebra $\left(k G_{1}\right)_{t} \otimes_{k((t))}\left(k G_{2}\right)_{t}$ is a separable deformation of $k\left(G_{1} \times G_{2}\right)$. Hence, for an abelian group H, the group algebra $k H$ admits a separable deformation.

What is known so far

Given separable deformations $\left(k G_{1}\right)_{t}$ and $\left(k G_{2}\right)_{t}$ of some group algebras $k G_{1}$ and $k G_{2}$ respectively, the algebra $\left(k G_{1}\right)_{t} \otimes_{k((t))}\left(k G_{2}\right)_{t}$ is a separable deformation of $k\left(G_{1} \times G_{2}\right)$. Hence, for an abelian group H, the group algebra $k H$ admits a separable deformation.

What is known so far

What is known so far

Regrading non abelian groups, the next list describes what is known (which is not much):

What is known so far

Regrading non abelian groups, the next list describes what is known (which is not much):

- When G is a group that has a cyclic p-Sylow subgroup, and k of a characteristic p (M. Schaps (1994)).
- When G has a normal Abelian p-Sylow subgroup and k as above (M. Gerstenhaber and M. Schaps (1996)).
- When G is a dihedral group (K. Erdmann and M. Schaps (1993)) or a semidihedral group (K. Erdmann (1994)).
- When G is a reflection group (with six exceptions) (M. Gerstenhaber, A. Giaquinto and M. Schaps (2001), M. Gerstenhaber and M. Schaps (1997), M. Peretz and M. Schaps (1999)).
- When G is the generalized quaternion group $Q_{2^{n}}$ (Y. Ginosar (2019)).

What is known so far

Regrading non abelian groups, the next list describes what is known (which is not much):

- When G is a group that has a cyclic p-Sylow subgroup, and k of a characteristic p (M. Schaps (1994)).
- When G has a normal Abelian p-Sylow subgroup and k as above (M. Gerstenhaber and M. Schaps (1996)).
- When G is a dihedral group (K. Erdmann and M. Schaps (1993)) or a semidihedral group (K. Erdmann (1994)).
- When G is a reflection group (with six exceptions) (M. Gerstenhaber, A. Giaquinto and M. Schaps (2001), M. Gerstenhaber and M. Schaps (1997), M. Peretz and M. Schaps (1999)).
- When G is the generalized quaternion group $Q_{2^{n}}$ (Y. Ginosar (2019)). Note that even for the case of a semidirect product of cyclic groups $C_{m} \rtimes_{\xi} C_{n}$, we do not have an answer.

Our conribution

Our conribution

We suggest to tackle the problem using induction.

Our conribution

We suggest to tackle the problem using induction.
Let

$$
1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1
$$

be a group extension.

Our conribution

We suggest to tackle the problem using induction.
Let

$$
1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1
$$

be a group extension. For a field k, suppose that we have a separable deformation $(k N)_{t}$ of $k N$.

Our conribution

We suggest to tackle the problem using induction.
Let

$$
1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1
$$

be a group extension. For a field k, suppose that we have a separable deformation $(k N)_{t}$ of $k N$.
Can we use this information in order to find a separable deformation of $k G$?

The solvable group case

The solvable group case

Let k be a field and suppose that G is a solvable group.

The solvable group case

Let k be a field and suppose that G is a solvable group. Then, we have an extension

$$
1 \longrightarrow N \longrightarrow G \longrightarrow C_{p} \longrightarrow 1,
$$

for some prime number p.

The solvable group case

Let k be a field and suppose that G is a solvable group.
Then, we have an extension

$$
1 \longrightarrow N \longrightarrow G \longrightarrow C_{p} \longrightarrow 1,
$$

for some prime number p.
In this case, we can describe $k G$ as a quotient of some skew polynomial ring $k N[y ; \eta]$:

The solvable group case

Let k be a field and suppose that G is a solvable group.
Then, we have an extension

$$
1 \longrightarrow N \longrightarrow G \longrightarrow C_{p} \longrightarrow 1,
$$

for some prime number p.
In this case, we can describe $k G$ as a quotient of some skew polynomial ring $k N[y ; \eta]$:

- $\eta \in \operatorname{Aut}_{k}(k N)$, such that η^{p} acts on $k N$ as a conjugation by an η-invariant element $u \in k N$.

The solvable group case

Let k be a field and suppose that G is a solvable group.
Then, we have an extension

$$
1 \longrightarrow N \longrightarrow G \longrightarrow C_{p} \longrightarrow 1,
$$

for some prime number p.
In this case, we can describe $k G$ as a quotient of some skew polynomial ring $k N[y ; \eta]$:

- $\eta \in \operatorname{Aut}_{k}(k N)$, such that η^{p} acts on $k N$ as a conjugation by an η-invariant element $u \in k N$.
- $k G \cong k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$.

The solvable group case

Let k be a field and suppose that G is a solvable group.
Then, we have an extension

$$
1 \longrightarrow N \longrightarrow G \longrightarrow C_{p} \longrightarrow 1,
$$

for some prime number p.
In this case, we can describe $k G$ as a quotient of some skew polynomial ring $k N[y ; \eta]$:

- $\eta \in \operatorname{Aut}_{k}(k N)$, such that η^{p} acts on $k N$ as a conjugation by an η-invariant element $u \in k N$.
- $k G \cong k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$.

This is a special case of a crossed product, and we denote

$$
k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle .
$$

Our proposed strategy

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.
(b) Find an automorphism $\eta_{t} \in \operatorname{Aut}_{k}\left((k N)_{t}\right)$, such that η_{t}^{p} acts on $(k N)_{t}$ as a conjugation by an η_{t}-invariant element $u_{t} \in(k N)_{t}$, such that:

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.
(b) Find an automorphism $\eta_{t} \in \operatorname{Aut}_{k}\left((k N)_{t}\right)$, such that η_{t}^{p} acts on $(k N)_{t}$ as a conjugation by an η_{t}-invariant element $u_{t} \in(k N)_{t}$, such that:

$$
\text { - } \eta_{t}(a)-\eta(a) \in t[k N]_{t}, \forall a \in k N .
$$

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.
(b) Find an automorphism $\eta_{t} \in \operatorname{Aut}_{k}\left((k N)_{t}\right)$, such that η_{t}^{p} acts on $(k N)_{t}$ as a conjugation by an η_{t}-invariant element $u_{t} \in(k N)_{t}$, such that:

- $\eta_{t}(a)-\eta(a) \in t[k N]_{t}, \forall a \in k N$.
- $u_{t}-u \in t[k N]_{t}$.

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.
(b) Find an automorphism $\eta_{t} \in \operatorname{Aut}_{k}\left((k N)_{t}\right)$, such that η_{t}^{p} acts on $(k N)_{t}$ as a conjugation by an η_{t}-invariant element $u_{t} \in(k N)_{t}$, such that:

- $\eta_{t}(a)-\eta(a) \in t[k N]_{t}, \forall a \in k N$.
- $u_{t}-u \in t[k N]_{t}$.

Theorem

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.
(b) Find an automorphism $\eta_{t} \in \operatorname{Aut}_{k}\left((k N)_{t}\right)$, such that η_{t}^{p} acts on $(k N)_{t}$ as a conjugation by an η_{t}-invariant element $u_{t} \in(k N)_{t}$, such that:

- $\eta_{t}(a)-\eta(a) \in t[k N]_{t}, \forall a \in k N$.
- $u_{t}-u \in t[k N]_{t}$.

Theorem

Suppose that (a) and (b) above are satisfied.

Our proposed strategy

Given a crossed product $k N * C_{p}:=k N[y ; \eta] /\left\langle y^{p}-u\right\rangle$, we propose the following:
(a) Find a separable deformation $(k N)_{t}$ of $k N$.
(b) Find an automorphism $\eta_{t} \in \operatorname{Aut}_{k}\left((k N)_{t}\right)$, such that η_{t}^{p} acts on $(k N)_{t}$ as a conjugation by an η_{t}-invariant element $u_{t} \in(k N)_{t}$, such that:

- $\eta_{t}(a)-\eta(a) \in t[k N]_{t}, \forall a \in k N$.
- $u_{t}-u \in t[k N]_{t}$.

Theorem

Suppose that (a) and (b) above are satisfied.
Then, there is a polynomial $q_{t}(y) \in t[k N]_{t}\left[y ; \eta_{t}\right]$, such that

$$
(k N)_{t}\left[y ; \eta_{t}\right] /\left\langle y^{p}-u_{t}+q_{t}(y)\right\rangle
$$

is a separable deformation of $k N * C_{p}$.

Our family of new examples

Our family of new examples

Let $s>1$ be an odd integer and let σ and τ be generators of $C_{s^{2}-1}$ and C_{2} respectively.

Our family of new examples

Let $s>1$ be an odd integer and let σ and τ be generators of $C_{s^{2}-1}$ and C_{2} respectively.
Consider the semidirect product

$$
G:=C_{s^{2}-1} \rtimes_{\xi} C_{2}=\langle\sigma\rangle \rtimes_{\xi}\langle\tau\rangle,
$$

where $\xi(\tau)(\sigma)=\sigma^{s}$.

Our family of new examples

Let $s>1$ be an odd integer and let σ and τ be generators of $C_{s^{2}-1}$ and C_{2} respectively.
Consider the semidirect product

$$
G:=C_{s^{2}-1} \rtimes_{\xi} C_{2}=\langle\sigma\rangle \rtimes_{\xi}\langle\tau\rangle,
$$

where $\xi(\tau)(\sigma)=\sigma^{s}$.
Then, given a field $k, k G$ is isomorphic to the crossed product

$$
k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle,
$$

Our family of new examples

Let $s>1$ be an odd integer and let σ and τ be generators of $C_{s^{2}-1}$ and C_{2} respectively.
Consider the semidirect product

$$
G:=C_{s^{2}-1} \rtimes_{\xi} C_{2}=\langle\sigma\rangle \rtimes_{\xi}\langle\tau\rangle,
$$

where $\xi(\tau)(\sigma)=\sigma^{s}$.
Then, given a field $k, k G$ is isomorphic to the crossed product

$$
k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle,
$$

where

$$
\eta: k C_{s^{2}-1} \rightarrow k C_{s^{2}-1}
$$

is a linear extension of the automorpism

$$
\xi(\tau): C_{s^{2}-1} \rightarrow C_{s^{2}-1} .
$$

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

We assume also that char $(k)=2, k=\bar{k}$ and define $\left(k C_{s^{2}-1}\right)_{t}, \eta_{t}$ and u_{t} as follows:

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

We assume also that char $(k)=2, k=\bar{k}$ and define $\left(k C_{s^{2}-1}\right)_{t}, \eta_{t}$ and u_{t} as follows:
(a) $\left(k C_{s^{2}-1}\right)_{t}:=k((t))[x] /\left\langle\pi_{t}(x)\right\rangle$, where

$$
\pi_{t}(x)=x^{s-1}\left(x^{s-1}+t x\right)^{s}+t x\left(x^{s-1}+t x\right)^{2}-1
$$

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

We assume also that char $(k)=2, k=\bar{k}$ and define $\left(k C_{s^{2}-1}\right)_{t}, \eta_{t}$ and u_{t} as follows:
(a) $\left(k C_{s^{2}-1}\right)_{t}:=k((t))[x] /\left\langle\pi_{t}(x)\right\rangle$, where

$$
\pi_{t}(x)=x^{s-1}\left(x^{s-1}+t x\right)^{s}+t x\left(x^{s-1}+t x\right)^{2}-1 .
$$

(b) $\eta_{t}(\bar{x})=\bar{x}^{s}+t \bar{x}^{2}$, where $\bar{x}:=x+\left\langle\pi_{t}(x)\right\rangle$.

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

We assume also that char $(k)=2, k=\bar{k}$ and define $\left(k C_{s^{2}-1}\right)_{t}, \eta_{t}$ and u_{t} as follows:
(a) $\left(k C_{s^{2}-1}\right)_{t}:=k((t))[x] /\left\langle\pi_{t}(x)\right\rangle$, where

$$
\pi_{t}(x)=x^{s-1}\left(x^{s-1}+t x\right)^{s}+t x\left(x^{s-1}+t x\right)^{2}-1 .
$$

(b) $\eta_{t}(\bar{x})=\bar{x}^{s}+t \bar{x}^{2}$, where $\bar{x}:=x+\left\langle\pi_{t}(x)\right\rangle$.
η_{t} is an automorphism of an order 2 , and hence, $u_{t}=1$.

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

We assume also that char $(k)=2, k=\bar{k}$ and define $\left(k C_{s^{2}-1}\right)_{t}, \eta_{t}$ and u_{t} as follows:
(a) $\left(k C_{s^{2}-1}\right)_{t}:=k((t))[x] /\left\langle\pi_{t}(x)\right\rangle$, where

$$
\pi_{t}(x)=x^{s-1}\left(x^{s-1}+t x\right)^{s}+t x\left(x^{s-1}+t x\right)^{2}-1 .
$$

(b) $\eta_{t}(\bar{x})=\bar{x}^{s}+t \bar{x}^{2}$, where $\bar{x}:=x+\left\langle\pi_{t}(x)\right\rangle$.
η_{t} is an automorphism of an order 2 , and hence, $u_{t}=1$.
So, by the Theorem shown, $k G$ admits a separable deformation.

Our family of new examples

$$
\begin{gathered}
G=C_{s^{2}-1} \rtimes_{\xi} C_{2} \\
k G \cong k C_{s^{2}-1} * C_{2}:=k C_{s^{2}-1}[y ; \eta] /\left\langle y^{2}-1\right\rangle
\end{gathered}
$$

We assume also that char $(k)=2, k=\bar{k}$ and define $\left(k C_{s^{2}-1}\right)_{t}, \eta_{t}$ and u_{t} as follows:
(a) $\left(k C_{s^{2}-1}\right)_{t}:=k((t))[x] /\left\langle\pi_{t}(x)\right\rangle$, where

$$
\pi_{t}(x)=x^{s-1}\left(x^{s-1}+t x\right)^{s}+t x\left(x^{s-1}+t x\right)^{2}-1 .
$$

(b) $\eta_{t}(\bar{x})=\bar{x}^{s}+t \bar{x}^{2}$, where $\bar{x}:=x+\left\langle\pi_{t}(x)\right\rangle$.
η_{t} is an automorphism of an order 2 , and hence, $u_{t}=1$.
So, by the Theorem shown, $k G$ admits a separable deformation.
For any odd $s>3$ (with some exceptions), we thus obtain a new example of a group satisfying the [DF] Conjecture.

Thank you!

