Classification of binary bi-braces and their group of automorphisms

Roberto Civino
University of L'Aquila
joint work with V. Fedele \& N. Gavioli
Groups, Rings and the Yang-Baxter equation 2023 - Blankenberge

19th June 2023

The setting

- \mathbb{F}_{2} be the field with two elements,
- $V=\mathbb{F}_{2}^{n}$ be the vector space of dimension n over \mathbb{F}_{2},
- $T_{+}<\operatorname{Sym} V$ be the group of translations of $(V,+)$.

A cryptographic game
us

A cryptographic game
us

A cryptographic game

US

challenger

A cryptographic game

us

$x_{1}, x_{2}, \ldots x_{t} \in V$
(+ related)
$\Longleftarrow f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{t}\right)$

A cryptographic game

$$
f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{t}\right)
$$

Goal: guess the coinflip w/ probability >0.5.
[BS91, CBS19]

[CCI23]

Bi-braces

There is a one-to-one correspondence between
conjugacy classes under $G L(V)$ of elementary abelian regular subgroups of $A G L(V)$ which are normalised by T_{+},
isomorphism classes of commutative radical algebras $(V,+, \cdot)$ with
$V^{3}=0$,
isomorphism classes of commutative \mathbb{F}_{2}-braces $(V,+, \circ)$ such that $(V, o,+)$ is an \mathbb{F}_{2}-brace, that we call a binary bi-braces.
[CDVS06, Chi19, Car20]

The socle

Recalling $u \cdot v=u+v+u \circ v$:

The socle

Recalling $u \cdot v=u+v+u \circ v$:

- $\operatorname{Soc}(V)=\{u \in V \mid \forall v \in V \quad u+v=u \circ v\}$, II
- $\operatorname{Ann}(V)=\{u \in V \mid \forall v \in V \quad u \cdot v=0\}$.

It is known that $\operatorname{dim} \operatorname{Soc}(V) \geqslant 1$ as \mathbb{F}_{2}-vector space [CDVS06]. Clearly bi-braces with socles of distinct dimension are not isomorphic.

Another representation

Assume that $d=\operatorname{dim} \operatorname{Soc}(V)$ and $m=n-d$.

Another representation

Assume that $d=\operatorname{dim} \operatorname{Soc}(V)$ and $m=n-d$.

We show that there exist

- a suitable subset $\Lambda\left(m, 2^{d}\right)$ of $m \times m$ alternating matrices over $\mathbb{F}_{2^{d}}$,
- an equivalence relation $\sim \operatorname{over} \Lambda\left(m, 2^{d}\right)$
such that
\sim equivalence classes are in one-to-one correspondence with
isomorphism classes of binary bi-braces.
[CFG23]

A 'canonical' socle

Let $(V,+, \circ)$ be a binary bi-brace with $d=\operatorname{dim} \operatorname{Soc}(V)$. Then

- (V, \circ) is an \mathbb{F}_{2}-vector space;
- $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of $(V,+)$ if and only if \mathcal{B} is a basis of (V, \circ).

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of $(V,+)$ and from now on let us assume that $\operatorname{Soc}(V)=\left\langle e_{m+1}, \ldots, e_{n}\right\rangle$.

Introducing a brace-related alternating matrix

Since $u \cdot v=0$ for each $v \in \operatorname{Soc}(V)$, under the assumption

$$
V \cdot V \leq \operatorname{Soc}(V)=\left\langle e_{m+1}, \ldots, e_{n}\right\rangle
$$

Introducing a brace-related alternating matrix

Since $u \cdot v=0$ for each $v \in \operatorname{Soc}(V)$, under the assumption

$$
V \cdot V \leq \operatorname{Soc}(V)=\left\langle e_{m+1}, \ldots, e_{n}\right\rangle
$$

a binary bi-brace is determined by the values, for $1 \leq i<j \leq m$, of

$$
e_{i} \cdot e_{j}=(\underbrace{0, \ldots, 0}_{m \text { zero's }}, \Theta_{i, j})
$$

where $\Theta_{i, j} \in \mathbb{F}_{2}^{d}$.

Introducing a brace-related alternating matrix

Since $u \cdot v=0$ for each $v \in \operatorname{Soc}(V)$, under the assumption

$$
V \cdot V \leq \operatorname{Soc}(V)=\left\langle e_{m+1}, \ldots, e_{n}\right\rangle
$$

a binary bi-brace is determined by the values, for $1 \leq i<j \leq m$, of

$$
e_{i} \cdot e_{j}=(\underbrace{0, \ldots, 0}_{m \text { zero's }}, \Theta_{i, j})
$$

where $\Theta_{i, j} \in \mathbb{F}_{2}^{d}$.

We call defining matrix of $(V,+, \circ)$ the $m \times m$ matrix defined by

$$
\Theta=\left[\Theta_{i, j}\right] .
$$

Representing vectors

Let a be a primitive element of $\mathbb{F}_{2^{d}}$. Then $\left\{1, a, \ldots, a^{d-1}\right\}$ is the canonical basis of $\left(\mathbb{F}_{2^{d}},+\right)$ as a vector space over \mathbb{F}_{2}. By the following isomorphism of vector spaces

$$
\varphi: \mathbb{F}_{2}^{d} \longrightarrow \mathbb{F}_{2^{d}}, \quad e_{k} \longmapsto a^{k-1} \quad(1 \leq k \leq d)
$$

we can think to the defining matrix as

$$
\Theta=\left[\Theta_{i, j} \varphi\right] \in \mathbb{F}_{2^{d}} m \times m .
$$

Brace from the defining matrix

A matrix $\Theta \in \mathbb{F}_{2^{d}}{ }^{m \times m}$ defines a binary bi-brace if and only if:
[CCS21]
(1) Θ is alternating, i.e., symmetric and zero-diagonal,

Brace from the defining matrix

A matrix $\Theta \in \mathbb{F}_{2^{d}}{ }^{m \times m}$ defines a binary bi-brace if and only if:
[CCS21]
(1) Θ is alternating, i.e., symmetric and zero-diagonal,
(2) for every $u_{1}, \ldots, u_{m} \in \mathbb{F}_{2}$

$$
u_{1} \Theta_{1}+\cdots+u_{m} \Theta_{m}=0 \quad \Longrightarrow \quad u_{i}=0 \quad \forall 1 \leq i \leq m
$$

Brace from the defining matrix

A matrix $\Theta \in \mathbb{F}_{2^{d}}{ }^{m \times m}$ defines a binary bi-brace if and only if:
[CCS21]
(1) Θ is alternating, i.e., symmetric and zero-diagonal,
(2) for every $u_{1}, \ldots, u_{m} \in \mathbb{F}_{2}$

$$
u_{1} \Theta_{1}+\cdots+u_{m} \Theta_{m}=0 \quad \Longrightarrow \quad u_{i}=0 \quad \forall 1 \leq i \leq m
$$

We denote the set of $m \times m$ alternating matrices satisfying (2) by

$$
\Lambda\left(m, 2^{d}\right)
$$

An example

$$
\begin{array}{ll}
u=6 \\
d=2 \\
m=4 & \Theta=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

An example

$$
\begin{aligned}
& u=6 \\
& d=2 \\
& m=4 \\
& \Theta=\begin{aligned}
& {\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] } \\
& \begin{array}{l}
1 \\
h_{1}
\end{array} l_{2} \\
l_{3} & l_{4}
\end{aligned} \\
& 1 \equiv(1,0) \\
& a \equiv(0,1)
\end{aligned}
$$

An example

$$
\begin{aligned}
& u=6 \\
& d=2 \\
& m=4
\end{aligned}
$$

$$
\begin{aligned}
& 1 \equiv(1,0) \\
& q \equiv(0,1)
\end{aligned}
$$

$$
\begin{aligned}
l_{1} \circ l_{3}= & l_{1}+l_{3}+\sqrt{l_{1}} \cdot l_{3}=l_{1}+l_{3} \\
l_{2} \circ l_{3}= & l_{2}+l_{3}+l_{2} \cdot l_{3} \\
= & (010000)+ \\
& (001000)+ \\
& (000001) \\
= & (0110: 01)
\end{aligned}
$$

An equivalence relation on Λ

Theorem (C.F.G.)
Let $(V,+, o),(V,+, \hat{o})$ be two binary bi-braces with defining matrices $\Theta, \widehat{\Theta} \in \Lambda\left(m, 2^{d}\right)$. They are isomorphic if and only if there exist $A \in G L(m, 2), D \in G L(d, 2)$ such that

$$
A\left[\Theta_{i, j} \varphi\right] A^{T}=\left[\widehat{\Theta}_{i, j} D \varphi\right] .
$$

An equivalence relation on Λ

Theorem (C.F.G.)
Let $(V,+, o),(V,+, \hat{o})$ be two binary bi-braces with defining matrices $\Theta, \widehat{\Theta} \in \Lambda\left(m, 2^{d}\right)$. They are isomorphic if and only if there exist $A \in G L(m, 2), D \in G L(d, 2)$ such that

$$
A \Theta A^{T}=\left[\widehat{\Theta}_{i, j} D\right] .
$$

An example

$$
\Theta=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \sim \hat{\Theta}=\left[\begin{array}{cccc}
0 & 0 & 1+a & 0 \\
0 & 0 & 0 & 1 \\
1+a & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

An example

$$
\begin{aligned}
& 1 \equiv(1,0) \\
& q \equiv(0,1)
\end{aligned}
$$

$$
\begin{gathered}
\Theta=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & a & 0 \\
0 & a & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \sim \hat{\Theta}=\left[\begin{array}{cccc}
0 & 0 & 1+a & 0 \\
0 & 0 & 0 & 1 \\
1+a & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
A=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \\
{\left[\widehat{\Theta}_{i, j} D \varphi\right]=\left[\begin{array}{cccc}
0 & 0 & (1,1) D \varphi & 0 \\
(1,1,1) D \varphi & 0 & 0 & (1,0)(1,0) D \varphi \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & a \\
1 & 0 & 0 & 0 \\
0 & a & 0 & 0
\end{array}\right]=A \Theta A^{T} .}
\end{gathered}
$$

The automorphisms problem - why?

encryption $=$ non-lin \times aff \times non-lin \times aff $\times \cdots \times$ non-lin \times aff

The automorphisms problem - why?

$$
\text { encryption }=\text { non-lin } \times \text { aff } \times \text { non-lin } \times \text { aff } \times \cdots \times \text { non-lin } \times \text { aff }
$$

where we want aff $\in \operatorname{AGL}(V,+) \cap \operatorname{AGL}(V, \circ)$.
[CBS19]

The automorphisms problem

We have $M=\left[\begin{array}{ll}A & B \\ 0 & D\end{array}\right] \in \operatorname{Aut}(V,+, \circ)$ if and only if

$$
A \in G L(m, 2), D \in G L(d, 2), B \in \mathbb{F}_{2}^{m \times d}
$$

and

$$
A\left[\Theta_{i, j \varphi}\right] A^{T}=\left[\Theta_{i, j} D \varphi\right] .
$$

When condition (2) looks better

A cryptographically relevant case occurs when the subspace

$$
V^{2}=V \cdot V=\langle u \cdot v: u, v \in V\rangle_{+} \subseteq \operatorname{Soc}(V)
$$

is uni-dimensional,

$$
x \circ y=x+y+\underbrace{x \cdot y}_{\in V^{2}}
$$

When condition (2) looks better

A cryptographically relevant case occurs when the subspace

$$
V^{2}=V \cdot V=\langle u \cdot v: u, v \in V\rangle_{+} \subseteq \operatorname{Soc}(V)
$$

is uni-dimensional, i.e., there exists a vector $b \in V$ such that

$$
V \cdot V=\{0, b\} \simeq \mathbb{F}_{2} .
$$

When condition (2) looks better

A cryptographically relevant case occurs when the subspace

$$
V^{2}=V \cdot V=\langle u \cdot v: u, v \in V\rangle_{+} \subseteq \operatorname{Soc}(V)
$$

is uni-dimensional, i.e., there exists a vector $b \in V$ such that

$$
V \cdot V=\{0, b\} \simeq \mathbb{F}_{2} .
$$

In particular for each $1 \leq i<j \leq m$

$$
\left(0, \ldots, 0, \Theta_{i, j}\right) \in\{0, b\}
$$

and so the defining matrix Θ is an invertible alternating matrix over \mathbb{F}_{2}.

Uni-dimensional V^{2}

- $(V,+, \cdot)$ such that $V \cdot V=\langle b\rangle$ with defining matrix Θ
- $(V,+, \widehat{\cdot})$ such that $V \widehat{\cdot} \cdot=\langle\widehat{b}\rangle$ with defining matrix $\widehat{\Theta}$

$$
A\left[\Theta_{i, j} \varphi\right] A^{T}=\left[\widehat{\Theta}_{i, j} D \varphi\right] \Longleftrightarrow\left\{\begin{array}{l}
A \Theta A^{T}=\widehat{\Theta} \\
b=\widehat{b} D
\end{array}\right.
$$

Uni-dimensional V^{2}

It is well known that alternating matrices of the same rank are congruent, i.e. $\Theta=A \widehat{\Theta} A^{T}$ for some $A \in G L(m, 2)$. For this reason:

Theorem (C.F.G.)
There is a unique isomorphism class of n-dimensional binary bi-braces with d-dimensional socle and uni-dimensional V^{2}.

The automorphisms for uni-dimensional V^{2}

Definition

Let $\Theta \in \Lambda\left(m, 2^{d}\right)$. The symplectic group of Θ is

$$
\operatorname{Sp}(\Theta)=\left\{A \in G L(m, 2) \mid A \Theta A^{T}=\Theta\right\} .
$$

The automorphisms for uni-dimensional V^{2}

Definition

Let $\Theta \in \Lambda\left(m, 2^{d}\right)$. The symplectic group of Θ is

$$
\operatorname{Sp}(\Theta)=\left\{A \in G L(m, 2) \mid A \Theta A^{T}=\Theta\right\} .
$$

Theorem (C.F.G.)
Let $(V,+, \circ)$ be a binary bi-braces with defining matrix $\Theta \in \Lambda\left(m, 2^{d}\right)$ and such that $V \cdot V=\langle b\rangle$. Then

$$
\operatorname{Aut}(V,+, \circ)=H \ltimes N
$$

The automorphisms for uni-dimensional V^{2}

Definition

Let $\Theta \in \Lambda\left(m, 2^{d}\right)$. The symplectic group of Θ is

$$
\operatorname{Sp}(\Theta)=\left\{A \in G L(m, 2) \mid A \Theta A^{T}=\Theta\right\} .
$$

Theorem (C.F.G.)

Let $(V,+, o)$ be a binary bi-braces with defining matrix $\Theta \in \Lambda\left(m, 2^{d}\right)$ and such that $V \cdot V=\langle b\rangle$. Then

$$
\operatorname{Aut}(V,+, \circ)=H \ltimes N,
$$

where $H=\operatorname{Sp}(\Theta) \times \operatorname{Stab}(b)$

The automorphisms for uni-dimensional V^{2}

Definition

Let $\Theta \in \Lambda\left(m, 2^{d}\right)$. The symplectic group of Θ is

$$
\operatorname{Sp}(\Theta)=\left\{A \in G L(m, 2) \mid A \Theta A^{T}=\Theta\right\} .
$$

Theorem (C.F.G.)

Let $(V,+, o)$ be a binary bi-braces with defining matrix $\Theta \in \Lambda\left(m, 2^{d}\right)$ and such that $V \cdot V=\langle b\rangle$. Then

$$
\operatorname{Aut}(V,+, \circ)=H \ltimes N,
$$

where $H=\operatorname{Sp}(\Theta) \times \operatorname{Stab}(b)$ and

$$
N=\left\{\left.\left[\begin{array}{ll}
1 & B \\
0 & 1
\end{array}\right] \right\rvert\, B \in \mathbb{F}_{2}^{m, d}\right\} .
$$

$m=2$ is easily classified

Notice that when socle co-dimension is $m=2$, then $V^{2}=\left\{0, e_{1} \cdot e_{2}\right\}$, i.e. $\operatorname{dim} V^{2}=1$.

So there exists a unique isomorphism class of binary bi-braces with socle co-dimension $m=2$.

$m=3$ is still easy

Theorem (C.F.G.)
Let $(V,+, \circ),(V,+, \hat{o})$ be two binary bi-braces, both with socle co-dimension $m=3$. Then they are isomorphic if and only if

$$
\operatorname{dim} V \cdot V=\operatorname{dim} V \wedge V
$$

In particular there are two isomorphism classes of binary bi-braces with socle co-dimension $m=3$ and socle dimension $d \geq 3$. The representative matrices are

$$
\left[\begin{array}{ccc}
0 & 1 & a \\
1 & 0 & a^{2} \\
a & a^{2} & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & a \\
1 & 0 & 0 \\
a & 0 & 0
\end{array}\right] .
$$

For $d=2$ and $m=3$ the isomorphism class is unique because $\operatorname{dim} V^{2}=2$.

Troubles start with $m=4$

The previous result is not true for $m \geqslant 4$. Indeed the representative matrices for the isomorphism classes when $d=2$ and $m=4$ are:
$\operatorname{dim} V^{2}=1\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$,
$\operatorname{dim} V^{2}=2\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & a \\ 1 & 0 & 0 & 0 \\ 0 & a & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0\end{array}\right],\left[\begin{array}{cccc}0 & 0 & 1 & a \\ 0 & 0 & 1+a & 1 \\ 1 & 1+a & 0 & 0 \\ a & 1 & 0 & 0\end{array}\right]$.

Classification results up(-ish) to $n=8$

n	m	d	$\#$ classes	\# operations \circ
$*$	2	$\geqslant 1$	1	
$*$	3	$\geqslant 3$	2	
5	3	2	1	42
5	4	1	1	28
6	4	2	4	3360
7	4	3	9	254968
7	5	2	2	937440
7	6	1	1	13888
8	4	4	13	16716840

Classification results up(-ish) to $n=8$

n	m	d	\# classes	\# operations \circ
$*$	2	$\geqslant 1$	1	
$*$	3	$\geqslant 3$	2	
5	3	2	1	42
5	4	1	1	28
6	4	2	4	3360
7	4	3	9	254968
7	5	2	2	937440
7	6	1	1	13888
8	4	4	13	16716840
8	5	3		
8	6	2	0	0

That's all!

Bibliography I

國 E．Biham and A．Shamir．
Differential cryptanalysis of DES－like cryptosystems．
Journal of Cryptology，4（1）：3－72， 1991.
圊 A．Caranti．
Bi－skew braces and regular subgroups of the holomorph．
J．Algebra，562：647－665， 2020.
R．Civino，C．Blondeau，and M．Sala．
Differential attacks：using alternative operations．

$$
\text { Des. Codes Cryptogr., 87(2-3):225-247, } 2019 .
$$

（R．Calderini，R．Civino，and R．Invernizzi．
Differential experiments using parallel alternative operations．
Work in progress， 2023.
䍰 M．Calderini，R．Civino，and M．Sala．
On properties of translation groups in the affine general linear group with applications to cryptography．
J．Algebra，569：658－680， 2021.

Bibliography II

軎 A. Caranti, F. Dalla Volta, and M. Sala. Abelian regular subgroups of the affine group and radical rings. Publ. Math. Debrecen, 69(3):297-308, 2006.
R R. Civino, V. Fedele, and N. Gavioli.
Classification of binary bi-braces.
Work in progress, 2023.
圊 L. N. Childs.
Bi-skew braces and Hopf Galois structures.
New York J. Math, 25:574-588, 2019.

