## University of Exeter

## Solutions to the YBE: cabling and decomposability

Ilaria Colazzo

I.Colazzo@exeter.ac.uk

June 19,2023


## Solutions of the Yang-Baxter equation

A set-theoretic solution (to the YBE) is a pair $(X, r)$ where $X$ is a non-empty set and $r: X \times X \rightarrow X \times X$ is a bijective map such that

$$
\begin{equation*}
(r \times \mathrm{id})(\mathrm{id} \times r)(r \times \mathrm{id})=(\mathrm{id} \times r)(r \times \mathrm{id})(\mathrm{id} \times r) \tag{*}
\end{equation*}
$$

Write $\quad r=\int$. Then $(*)$ becomes


## Set-theoretic solutions to the Yang-Baxter equation

Let $(X, r)$ be a set-theoretic solution to the YBE. Write

$$
r(x, y)=\left(\lambda_{x}(y), \rho_{y}(x)\right)
$$

where $\lambda_{x}, \rho_{x}: X \rightarrow X$.

- $(X, r)$ is involutive if $r^{2}=\mathrm{id}$.
- $(X, r)$ is finite if $X$ is finite.
- $(X, r)$ is non-degenerate if $\lambda_{X}$ and $\rho_{X}$ are bijective for all $x \in X$.


## Examples

$X$ a set.

- $r(x, y)=(y, x)$ is an involutive non-degenerate solution.
- $f, g$ permutaion of $X$. Then $r(x, y)=(f(y), g(x))$ is a solution if and only if $f g=g f$.
Morever, $(X, r)$ is involutive if and only if $g=f^{-1}$.
$(X, r)$ is called a permutational solution or a Lyubashenko's solution.
$G$ a group.
- $r(x, y)=\left(y, y^{-1} x y\right)$ is a bijective non-degenerate solution.


## Convention

From now on

$$
\begin{aligned}
\text { solution }= & \text { finite bijective non-degenerate } \\
& \text { set-theoretic solution to the YBE. }
\end{aligned}
$$

## The derived solution

Let $(X, r)$ be a solution. The left derived solution $(X, s)$ is the solution $s: X \times X \rightarrow X \times X,(x, y) \mapsto\left(y, \sigma_{y}(x)\right)$ where

$$
\sigma_{y}(x)=\lambda_{y} \rho_{\lambda_{x}^{-1}(y)}(x)
$$

$$
\lambda_{y} \rho_{\lambda_{x}^{-1}(y)}(x)
$$



## Derived solutions and racks

Let $(X, r)$ be a solution and $(X, s)$ its derived solution. Define a binary operation on $X$ in the following way $y \triangleleft x=\sigma_{x}(y)$. Then $(X, \triangleleft)$ is a rack, i.e.

- the maps $\sigma_{x}$ are bijective, and
- $(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)$, for all $x, y, z \in X$.

Conversely, if $(X, \triangleleft)$ is a rack that the map $s: X \times X \rightarrow X \times X$ defined by $r(x, y)=(y, x \triangleleft y)$ is a solution.
We call such a solution, solution associated to the rack $(X, \triangleleft)$.

## Example

Let $G$ be a group and define $x \triangleleft y=y^{-1} x y$.
Then $(G, \triangleleft)$ is a rack (called conjugation rack) and its associated solution is

$$
r(x, y)=\left(y, y^{-1} x y\right)
$$

## Indecomposable solutions

A solution $(X, r)$ is decomposable if there exists a partition of $X$ (i.e. $\emptyset \neq Y, Z \subseteq X$ such that $X=Y \cup Z$ and $Y \cap Z=\emptyset$ ) s.t.

$$
r(Y \times Y) \subseteq Y \times Y \quad \text { and } \quad r(Z \times Z) \subseteq Z \times Z
$$

Otherwise, the solution is said to be indecomposable.

## Indecomposable solutions

Fact. A solution $(X, r)$ is indecomposable if and only if the group

$$
\operatorname{gr}\left(\lambda_{x}, \rho_{y}: x, y \in X\right)
$$

acts transitively on $X$.

## Indecomposable solutions

Example

- $X$ a set with $n$ elements.
- $f$ a cycle of length $n$.
- Then $r: X \times X \rightarrow X \times X,(x, y) \mapsto(f(y), x)$ is an indecomposable solution.

Problem. Construct indecomposable solutions.

## Involutive indecomposable solutions

Facts. Let $(X, r)$ be an involutive solution. Then

- $\rho_{y}(x)=\lambda_{\lambda_{x}(y)}^{-1}(x)$, for all $x, y \in X$.
- $(X, r)$ is indecomposable if and only if $\operatorname{gr}\left(\lambda_{x}: x \in X\right)$ is transitive on $X$.


## The diagonal map

Let $(X, r)$ be a involutive solution. The map $T: X \rightarrow X$ defined by

$$
T(x)=\lambda_{x}^{-1}(x)
$$

is bijective and it is called the diagonal map.
Important. The cycle decomposition of $T$ is an invariant for solutions and gives information about decomposability.

## Square-free solutions

A solution $(X, r)$ is square-free if $r(x, x)=(x, x)$ (i.e., $T=\mathrm{id}$ ).

Theorem (Rump, conjecture by Gateva-Ivanova). If $(X, r)$ is a square-free involutive solution, then $(X, r)$ is decomposable.

Problem. What can we say about the cycle decomposition of $T$ for (in)decomposable solutions?

## Some results

Let $(X, r)$ be a solution and assume $|X|=n$.
(Ramírez \& Vendramin)

- If $T$ is a $n$-cycle, then $(X, r)$ is indecomposable.
$\rightarrow$ If $T$ is a $(n-1)$-cycle, then $(X, r)$ is decomposable.
- If $T$ is a $(n-2)$-cycle, $n$ odd, then $(X, r)$ is decomposable.
- If $T$ is a $(n-3)$-cycle, $\operatorname{gcd}(n, 3)=1$ odd, then $(X, r)$ is decomposable.
(Camp-Mora \& Sastriques)
- If $\operatorname{gcd}(|T|, n)=1$, then $(X, r)$ is decomposable.


## Skew braces

A skew brace is a triple $(B,+, \circ)$ such that $(B,+)$ and $(B, \circ)$ are (not necessarily abelian) groups and the following holds

$$
a \circ(b+c)=a \circ b-a+a \circ c,
$$

for all $a, b, c \in B$.

- $(B,+)$ is the additive structure of $(B,+, \circ)$.
- $(B, \circ)$ is the multiplicative structure of $(B,+, \circ)$.


## Skew braces

Examples

- Let $(G,+)$ be (any) group. Then $(G,+,+)$ and $\left(G,+{ }^{o p},+\right)$ are skew braces.
- Any radical ring is a skew brace.


## The structure group

Let $(X, r)$ be a solution. The group defined by

$$
G(X, r)=\operatorname{gr}\left(X \mid x \circ y=\lambda_{x}(y) \circ \rho_{y}(x)\right)
$$

is structure group of $(X, r)$.
If $(X, r)$ is an involutive, then $G(X, r)$ has a structure of skew brace with additive structure isomorphic to $\mathbb{Z}^{|X|}$.

## Facts.

- If $B$ is a skew brace, then
$r_{B}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{\prime} \circ a \circ b\right)$ is a solution.
If, in addition, $(B,+)$ is abelian then $r_{B}$ is involutive.
- If $(X, r)$ is an involutive solution then $(X, r)$ extends to $\left(G(X, r), r_{G(X, r)}\right)$.
- If $(X, r)$ is an involutive solution then $\iota: X \rightarrow G(X, r)$, $x \rightarrow x$ is injective.


## Idea: cabling

Lebed, Ramírez \& Vendramin

Let $(X, r)$ be an involutive solution. For $k \geq 1$, the map $\iota^{(k)}: X \rightarrow G(X, r), x \mapsto k x$ is injective.

$$
\begin{array}{cc}
(X, r) \xrightarrow{\text { extend }} \quad \begin{array}{c}
\left(G(X, r), r_{G(x, r)}\right) \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} \text {-cabled solution }
\end{array} \text { pull-back using } \iota^{(k)}
$$

Theorem (Lebed, Ramírez \& Vendramin). Let $(X, r)$ be an involutive solution.

- The diagonal map of $r^{(k)}$ is $T^{k}$.
- If $(X, r)$ indecomposable and $\operatorname{gcd}(|X|, k)=1$, then $r^{(k)}$ is indecomposable.

Taking $k=|T|$ Camp-Mora \& Sastriques theorem reduces to Rump's theorem.

Question. What about cabling for non-involutive solutions?

## Main issues (1)

Let $(X, r)$ be a solution. One of the main issues is that $\iota: X \rightarrow G(X, r), x \mapsto x$ is not an injective map.

## Example.

- $X=\{1,2,3,4\}$.
- $f=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $g=\left(\begin{array}{ll}3 & 4\end{array}\right)$.
- $r(x, y)=(f(y), g(x))$ is a solution.
- $(X, r)$ is not injective. Indeed, in $G(X, r)$ we have $1=2$ and $3=4$.


## The injectivization

Let $(X, r)$ be a e solution and let $\iota: X \rightarrow G(X, r) x \mapsto x$. Then

$$
\operatorname{Inj}(X, r)=\left(\iota(X), r_{\left.\left.G(X, r)\right|_{\iota(X) \times \iota(X)}\right)}\right)
$$

is a solution called the injectivization of $(X, r)$.
Fact. It holds that

$$
G(X, r) \cong G\left(\iota(X), r_{\left.G(X, r)\right|_{\iota(X) \times \iota(X)}}\right)
$$

## Injective solutions

A solution $(X, r)$ is injective if the map $\iota: X \rightarrow G(X, r)$ is injective.

## Examples.

- $(X, r)$ a solution $\operatorname{lnj}(X, r)$ is an injective solution.
- Solutions associated to skew braces are injective.
- Irretractable solutions are injective.


## We can focus on injective solutions

Theorem (IC \& Van Antwerpen). Let $(X, r)$ be a solution. Then

$$
(X, r) \text { is decomposable } \Longleftrightarrow \operatorname{Inj}(X, r) \text { is decomposable. }
$$

Hence, we can focus simply on injective solutions.

## Main issues (2)

Recall that in the definition of the $k$-cabled solution, it was crucial that the map $\iota^{(k)}: X \rightarrow G(X, r), x \mapsto k x$ is injective.
However, this fails even for injective solutions.
Example.

- $X=\left\{x_{1}, x_{2}, x_{3}\right\}$.
- $\sigma_{1}=\left(\begin{array}{ll}2 & 3\end{array}\right), \sigma_{2}=\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $\sigma_{3}=\left(\begin{array}{ll}1 & 2\end{array}\right)$.

The solution

$$
r\left(x_{j}, x_{k}\right)=\left(x_{k}, x_{\sigma_{k}(j)}\right)
$$

is injective and indecomposable.
But in $G(X, r)$ one has that $2 x_{1}=2 x_{2}=2 x_{3}$.

## The structure monoid

Let $(X, r)$ be a solution. The structure monoid is the monoid

$$
M(X, r)=\left\langle X \mid x \circ y=\lambda_{x}(y) \circ \rho_{y}(x)\right\rangle
$$

Facts (Gateva-Ivanova \& Majid, Lebed \&Vendramin).

- If $(X, r)$ is a solution then $(X, r)$ extends in a unique way a solution $r_{M}$ on $M(X, r)$ such that

$$
r_{M(X, r)}(\iota \times \iota)=(\iota \times \iota) r
$$

where $\iota: X \rightarrow G(X, r)$ is the canonical map.

- $M(X, r) \stackrel{\text { regular }}{\hookrightarrow} A(X, r) \rtimes \operatorname{Sym} X$, where $A(X, r)=\left\langle X \mid x+z=z+\sigma_{z}(x)\right\rangle$ is the structure monoid associated to the derived solution.


## $k$-cabled solutions

Prop (IC, Van Antwerpen). Let $(X, r)$ be an injective solution. Then $k X=\left\{\left(k x, \lambda_{k x}\right)\right\} \subseteq M(X, r)$ defines a subsolution $\left(k X, r_{k}\right)$ of $\left(M(X, r), r_{M}\right)$.

Definition. Let $(X, r)$ be an injective solution and let $r^{(k)}=\left(\varphi_{k}^{-1} \times \varphi_{k}^{-1}\right) r_{k}\left(\varphi_{k} \times \varphi\right)$ where $\varphi_{k}: X \rightarrow k X, x \mapsto k x$. Then $\left(X, r^{(k)}\right)$ is the $k$-cabled solution.

Prop. Let $(X, r)$ be an injective solution.

- If $k$ is an integer, then $\left(X, r^{(k)}\right)$ is injective.
- If $k, k^{\prime}$ are integers, then $\left(X,\left(r^{(k)}\right)^{\left(k^{\prime}\right)}\right)=\left(X, r^{\left(k k^{\prime}\right)}\right)$.

Theorem (IC, Van Antwerpen). Let $(X, r)$ be an injective solution.

- The diagonal map of $r^{(k)}$ is $T^{k}$.
- If $(X, r)$ indecomposable and $\operatorname{gcd}(|X|, k)=1$, then $r^{(k)}$ is indecomposable.


## Decomposability results

Theorem (Darné). Let $(X, \triangleleft)$ be a rack with $|X|>1$ such that $x \triangleleft x=x$ (i.e. $(X, \triangleleft)$ is a quandle), and let $\left(X, r_{\triangleleft}\right)$ the solutions associated to $(X, \triangleleft)$. If the structure group $G\left(X, r_{\triangleleft}\right)$ is nilpotent and not isomorphic to $\mathbb{Z}$, then $\left(X, r_{\triangleleft}\right)$ is decomposable.

We obtained a completely group-theoretical proof of this result.
Corollary. Let $(X, \triangleleft)$ be a rack and let $\left(X, r_{\triangleleft}\right)$ the solutions associated to $(X, \triangleleft)$. If the structure group $G\left(X, r_{\triangleleft}\right)$ is nilpotent and not isomorphic to $\mathbb{Z}$, then $\left(X, r_{\triangleleft}\right)$ is decomposable.

## Is nilpotent an essential assumption?

Example. Consider the group $S_{3}$ and consider the conjugation quandle on $S_{3}$, i.e. $y \triangleleft x=x^{-1} y x$ and ( $S_{3}, s$ ) its associated solution. We can restrict the map $s$ to $X=\left\{(12),\left(\begin{array}{ll}2 & 3\end{array}\right),(13)\right\}$. One can prove that

- $\left(X, s_{X \times X}\right)$ is a square-free, indecomposable solution.
- $G\left(X, s_{X \times X}\right)$ is not nilpotent.


## Square-free solutions

Theorem (IC, Van Antwerpen) . Let $(X, r)$ be a solution and $(X, s)$ its derived solution. If $(X, r)$ is square-free and $A_{g}(X, r)=G(X, s)$ is nilpotent, then $(X, r)$ is decomposable.

## Thank you!!!

