

Solutions to the YBE: cabling and decomposability

Ilaria Colazzo

I.Colazzo@exeter.ac.uk

June 19,2023

Groups, rings and the Yang-Baxter equation 2023

Solutions of the Yang-Baxter equation

A set-theoretic solution (to the YBE) is a pair (X, r) where X is a non-empty set and $r: X \times X \to X \times X$ is a bijective map such that

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r). \tag{*}$$

Write
$$r = \bigcirc$$
 . Then (*) becomes

Set-theoretic solutions to the Yang-Baxter equation

Let (X, r) be a set-theoretic solution to the YBE. Write

$$r(x, y) = (\lambda_x(y), \rho_y(x))$$

where $\lambda_X, \rho_X : X \to X$.

- \blacktriangleright (X, r) is involutive if $r^2 = id$.
- \blacktriangleright (X, r) is finite if X is finite.
- ▶ (X, r) is non-degenerate if λ_X and ρ_X are bijective for all $X \in X$.

Examples

X a set.

- ightharpoonup r(x,y)=(y,x) is an involutive non-degenerate solution.
- ▶ f, g permutaion of X. Then r(x, y) = (f(y), g(x)) is a solution if and only if fg = gf.

Morever, (X, r) is involutive if and only if $g = f^{-1}$.

(X, r) is called a permutational solution or a Lyubashenko's solution.

G a group.

 $ightharpoonup r(x,y)=(y,y^{-1}xy)$ is a bijective non-degenerate solution.

Convention

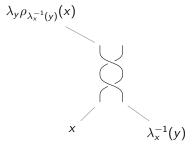
From now on

```
solution = finite bijective non-degenerate set-theoretic solution to the YBE.
```

The derived solution

Let (X, r) be a solution. The left derived solution (X, s) is the solution $s: X \times X \to X \times X, (x, y) \mapsto (y, \sigma_y(x))$ where

$$\sigma_y(x) = \lambda_y \rho_{\lambda_x^{-1}(y)}(x).$$



Derived solutions and racks

Let (X, r) be a solution and (X, s) its derived solution. Define a binary operation on X in the following way $y \triangleleft x = \sigma_x(y)$. Then (X, \triangleleft) is a rack, i.e.

- \blacktriangleright the maps σ_X are bijective, and
- $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z), \text{ for all } x, y, z \in X.$

Conversely, if (X, \triangleleft) is a rack that the map $s: X \times X \to X \times X$ defined by $r(x, y) = (y, x \triangleleft y)$ is a solution.

We call such a solution, solution associated to the rack (X, \triangleleft) .

Example

Let G be a group and define $x \triangleleft y = y^{-1}xy$.

Then (G, \triangleleft) is a rack (called conjugation rack) and its associated solution is

$$r(x,y)=(y,y^{-1}xy).$$

Indecomposable solutions

A solution (X, r) is decomposable if there exists a partition of X (i.e. $\emptyset \neq Y, Z \subseteq X$ such that $X = Y \cup Z$ and $Y \cap Z = \emptyset$) s.t.

$$r(Y \times Y) \subseteq Y \times Y$$
 and $r(Z \times Z) \subseteq Z \times Z$.

Otherwise, the solution is said to be indecomposable.

Indecomposable solutions

Fact. A solution (X, r) is indecomposable if and only if the group

$$gr(\lambda_x, \rho_y : x, y \in X)$$

acts transitively on X.

Indecomposable solutions

Example

- \triangleright X a set with n elements.
- ightharpoonup f a cycle of length n.
- ► Then $r: X \times X \to X \times X, (x, y) \mapsto (f(y), x)$ is an indecomposable solution.

Problem. Construct indecomposable solutions.

Involutive indecomposable solutions

Facts. Let (X, r) be an **involutive** solution. Then

- ▶ (X, r) is indecomposable if and only if $gr(\lambda_x : x \in X)$ is transitive on X.

The diagonal map

Let (X, r) be a **involutive** solution. The map $T: X \to X$ defined by

$$T(x) = \lambda_x^{-1}(x).$$

is bijective and it is called the diagonal map.

Important. The cycle decomposition of T is an invariant for solutions and gives information about decomposability.

Square-free solutions

A solution (X, r) is square-free if r(x, x) = (x, x) (i.e., T = id).

Theorem (Rump, conjecture by Gateva-Ivanova). If (X, r) is a square-free **involutive** solution, then (X, r) is decomposable.

Problem. What can we say about the cycle decomposition of \mathcal{T} for (in)decomposable solutions?

Some results

Let (X, r) be a solution and assume |X| = n.

(Ramírez & Vendramin)

- ▶ If T is a n-cycle, then (X, r) is indecomposable.
- ▶ If T is a (n-1)-cycle, then (X, r) is decomposable.
- ▶ If T is a (n-2)-cycle, n odd, then (X, r) is decomposable.
- ▶ If T is a (n-3)-cycle, gcd(n,3) = 1 odd, then (X, r) is decomposable.

(Camp-Mora & Sastriques)

▶ If gcd(|T|, n) = 1, then (X, r) is decomposable.

Skew braces

A skew brace is a triple $(B,+,\circ)$ such that (B,+) and (B,\circ) are (not necessarily abelian) groups and the following holds

$$a\circ(b+c)=a\circ b-a+a\circ c,$$

for all $a, b, c \in B$.

- ▶ (B, +) is the additive structure of $(B, +, \circ)$.
- ▶ (B, \circ) is the multiplicative structure of $(B, +, \circ)$.

Skew braces

Examples

- ▶ Let (G, +) be (any) group. Then (G, +, +) and $(G, +^{op}, +)$ are skew braces.
- ► Any radical ring is a skew brace.

The structure group

Let (X, r) be a solution. The group defined by

$$G(X, r) = gr(X \mid x \circ y = \lambda_x(y) \circ \rho_y(x))$$

is structure group of (X, r).

If (X, r) is an **involutive**, then G(X, r) has a structure of skew brace with additive structure isomorphic to $\mathbb{Z}^{|X|}$.

Facts.

- ▶ If B is a skew brace, then $r_B(a,b) = (-a+a \circ b, (-a+a \circ b)' \circ a \circ b)$ is a solution. If, in addition, (B,+) is abelian then r_B is involutive.
- ▶ If (X, r) is an **involutive** solution then (X, r) extends to $(G(X, r), r_{G(X, r)})$.
- ▶ If (X, r) is an **involutive** solution then $\iota : X \to G(X, r)$, $x \to x$ is injective.

Idea: cabling

Lebed, Ramírez & Vendramin

Let (X, r) be an involutive solution. For $k \ge 1$, the map $\iota^{(k)}: X \to G(X, r), x \mapsto kx$ is injective.

$$\begin{array}{ccc} (X,r) & \stackrel{\mathsf{extend}}{\longrightarrow} & (G(X,r),r_{G(x,r)}) \\ & & \downarrow & \mathsf{pull-back} \ \mathsf{using} \ \iota^{(k)} \\ & & & r^{(k)} \\ \end{array}$$

k-cabled solution

Theorem (Lebed, Ramírez & Vendramin). Let (X, r) be an involutive solution.

- ▶ The diagonal map of $r^{(k)}$ is T^k .
- ▶ If (X, r) indecomposable and gcd(|X|, k) = 1, then $r^{(k)}$ is indecomposable.

Taking k = |T| Camp-Mora & Sastriques theorem reduces to Rump's theorem.

Question. What about cabling for non-involutive solutions?

Main issues (1)

Let (X, r) be a solution. One of the main issues is that $\iota: X \to G(X, r)$, $x \mapsto x$ is not an injective map.

Example.

- $X = \{1, 2, 3, 4\}.$
- $ightharpoonup f = (1 \ 2) \text{ and } g = (3 \ 4).$
- ightharpoonup r(x,y)=(f(y),g(x)) is a solution.
- (X, r) is not injective. Indeed, in G(X, r) we have 1 = 2 and 3 = 4.

The injectivization

Let (X, r) be a e solution and let $\iota : X \to G(X, r) \times X$. Then

$$\operatorname{Inj}(X,r) = (\iota(X), r_{G(X,r)|_{\iota(X) \times \iota(X)}})$$

is a solution called the injectivization of (X, r).

Fact. It holds that

$$G(X,r)\cong G(\iota(X),r_{G(X,r)|_{\iota(X)\times\iota(X)}}).$$

Injective solutions

A solution (X, r) is injective if the map $\iota : X \to G(X, r)$ is injective.

Examples.

- \blacktriangleright (X,r) a solution Inj(X,r) is an injective solution.
- Solutions associated to skew braces are injective.
- Irretractable solutions are injective.

We can focus on injective solutions

Theorem (IC & Van Antwerpen). Let (X, r) be a solution. Then (X, r) is decomposable \iff Inj(X, r) is decomposable.

Hence, we can focus simply on injective solutions.

Main issues (2)

Recall that in the definition of the k-cabled solution, it was crucial that the map $\iota^{(k)}: X \to G(X,r)$, $x \mapsto kx$ is injective. However, this **fails** even for injective solutions.

Example.

- $X = \{x_1, x_2, x_3\}.$
- $\sigma_1 = (2 \ 3)$, $\sigma_2 = (1 \ 3)$ and $\sigma_3 = (1 \ 2)$.

The solution

$$r(x_j, x_k) = (x_k, x_{\sigma_k(j)})$$

is injective and indecomposable.

But in G(X, r) one has that $2x_1 = 2x_2 = 2x_3$.

The structure monoid

Let (X, r) be a solution. The structure monoid is the monoid

$$M(X,r) = \langle X \mid x \circ y = \lambda_x(y) \circ \rho_y(x) \rangle.$$

Facts (Gateva-Ivanova & Majid, Lebed & Vendramin).

▶ If (X, r) is a solution then (X, r) extends in a unique way a solution r_M on M(X, r) such that

$$r_{M(X,r)}(\iota \times \iota) = (\iota \times \iota)r$$

where $\iota: X \to G(X, r)$ is the canonical map.

► $M(X,r) \stackrel{\text{regular}}{\hookrightarrow} A(X,r) \times \text{Sym } X$, where $A(X,r) = \langle X \mid x+z=z+\sigma_z(x) \rangle$ is the structure monoid associated to the derived solution.

k-cabled solutions

Prop (IC, Van Antwerpen). Let (X, r) be an **injective** solution. Then $kX = \{(kx, \lambda_{kx})\} \subseteq M(X, r)$ defines a subsolution (kX, r_k) of $(M(X, r), r_M)$.

Definition. Let (X, r) be an **injective** solution and let $r^{(k)} = (\varphi_k^{-1} \times \varphi_k^{-1}) r_k (\varphi_k \times \varphi)$ where $\varphi_k : X \to kX, x \mapsto kx$. Then $(X, r^{(k)})$ is the k-cabled solution.

Prop. Let (X, r) be an injective solution.

- ▶ If k is an integer, then $(X, r^{(k)})$ is injective.
- ▶ If k, k' are integers, then $(X, (r^{(k)})^{(k')}) = (X, r^{(kk')})$.

Theorem (IC, Van Antwerpen). Let (X, r) be an injective solution.

- ▶ The diagonal map of $r^{(k)}$ is T^k .
- ▶ If (X, r) indecomposable and gcd(|X|, k) = 1, then $r^{(k)}$ is indecomposable.

Decomposability results

Theorem (Darné). Let (X, \triangleleft) be a rack with |X| > 1 such that $x \triangleleft x = x$ (i.e. (X, \triangleleft) is a quandle), and let (X, r_{\triangleleft}) the solutions associated to (X, \triangleleft) . If the structure group $G(X, r_{\triangleleft})$ is **nilpotent** and not isomorphic to \mathbb{Z} , then (X, r_{\triangleleft}) is **decomposable**.

We obtained a completely group-theoretical proof of this result.

Corollary. Let (X, \triangleleft) be a rack and let (X, r_{\triangleleft}) the solutions associated to (X, \triangleleft) . If the structure group $G(X, r_{\triangleleft})$ is **nilpotent** and not isomorphic to \mathbb{Z} , then (X, r_{\triangleleft}) is **decomposable**.

Is nilpotent an essential assumption?

Example. Consider the group S_3 and consider the conjugation quandle on S_3 , i.e. $y \triangleleft x = x^{-1}yx$ and (S_3, s) its associated solution. We can restrict the map s to $X = \{(1\ 2), (2\ 3), (1\ 3)\}$. One can prove that

- $(X, s_{X \times X})$ is a square-free, indecomposable solution.
- ► $G(X, s_{X \times X})$ is not nilpotent.

Square-free solutions

Theorem (IC, Van Antwerpen). Let (X, r) be a solution and (X, s) its derived solution. If (X, r) is square-free and $A_g(X, r) = G(X, s)$ is **nilpotent**, then (X, r) is decomposable.

Thank you!!!