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Motivation...

Theorem (Fundamental Theorem of Galois Theory)
If L/K is Galois, then there is a bijective correspondence between

Fields K < F < L, and

Subgroups H < Gal(L/K )

given by F = LH .

• Only applies to Galois extensions

• Gal(L/K ) is unique

Can we come up with a structure that mimics the Galois group but

also makes sense for non-Galois extensions?
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Starting from Galois

L/K Galois extension, G := Gal(L/K ).

Then

• L is a K [G ]-module algebra

• The linear map induced by this action given by

θ : L⊗ K [G ]→ EndK (L)

x ⊗ h 7→ θ(x ⊗ h)(y) = x(h · y)

is an isomorphism.

• K [G ] has the structure of a Hopf algebra.

This gives an example of a Hopf-Galois Structure
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Some facts

Fact 1: K [G ] may not be the only Hopf algebra to act on L in

such a way (unlike there being a unique Galois group)

Fact 2: This also makes sense for non-normal extensions (it can

actually be defined for certain rings as well)

Fact 3: There is an analogous ”Hopf-Galois Correspondence”. It

is always injective, but not always surjective.

My work focuses on studying, describing and counting Hopf-Galois

structures for different field extensions.
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Translation to group theory

Define the holomorph, Hol(N) of a group N to be the semidirect

product of N and Aut(N):

Hol(N) ∼= N oAut(N).

Where

(η, α)(µ, β) = (ηα(µ), αβ).

Note: Hol(N) has a natural action on N given by:

(η, α) · µ = ηα(µ)

L/K (not necessarily Galois) extension, E Galois closure, and

G := Gal(E/K ). In 1996, Byott [Byo96] (building on [GP87])

showed that HGS on L/K correspond with transitive subgroups of

Hol(N) (where N cycles through the groups of order [L : K ])

isomorphic to G .

H = E [N]G
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Remark

• In the case that L/K is Galois, |G | = |N| and so we want

regular subgroups of Hol(N).

• Regular subgroups of the holomorph are also known to describe

skew braces (G acts as (B, ·) and N acts as (B,+)).

• Thus the study of HGS and of skew braces is intimately con-

nected (many related results).
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Examples

• K [G ] is a HGS on L/K of type G .

• N is a transitive subgroup of Hol(N).

• Hol(N) is a transitive subgroup of Hol(N)

• If G < Hol(N) is transitive then G < Hol(Nop) is transitive.

• L/K degree p2, 2p [CS20], mp with (m, p) = 1 [Koh07] &

[Koh16], squarefree Galois [AB20],...
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L/K degree pq

Idea: for each N of order pq, obtain a ‘nice’ presentation for

Hol(N) to help find transitive subgroups.

There are two abstract groups of order pq for q | (p − 1): Cpq and

Cp o Cq. In each group, let σ, τ be the generators of orders p, q

respectively.

Hol(Cpq) ∼= Cpq o (Cp−1 × Cq−1)

Hol(Cp o Cq) ∼= (Cp o Cq) o (Cp o Cp−1)

In each case, we find the smallest subgroups of Hol(N) which are

transitive on N and then build up.
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For N ∼= Cpq, these ‘minimally transitive’ subgroups are

N,

〈σ, [τ, αu]〉

for α generating the unique Sylow q-subgroup of Aut(N) and

u 6= 0.

To get ALL transitive subgroups of Hol(Cpq) we may extend these

groups by any subgroups of their normalisers in Aut(N) (that is

Aut(N) and Aut(〈σ〉) respectively).

For N ∼= Cp o Cq, it is possible to write Hol(N) as P o R for P,R

abelian groups of orders p2, q(p − 1) respectively.
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Questions

• How much can we extend the methods to all squarefree

extensions?

• How much can we push these results to other related

constructions?
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Thank You!
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