Beams and Scaffolds - The art of building modular Garside groups

Carsten Dietzel

Groups, Rings and the Yang-Baxter Equation Blankenberge - June 23rd, 2023

1 Introduction

2 Modular quasi-Garside groups

Jun 23, 2023 271

E

Introduction

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

900

Ξ.

Review of lattices

Notation

Let (L, \leq) be a poset and $A \subseteq L$. For $z \in L$, write

• $z = \bigwedge A$, if for all $y \in L$, we have the equivalence

 $(\forall x \in L : y \leq x) \Leftrightarrow y \leq z.$

We call *z* the meet of *A*.

• $z = \bigvee A$, if for all $y \in L$, we have the equivalence

 $(\forall x \in L : y \ge x) \Leftrightarrow y \ge z.$

We call *z* the join of *A*.

Definition: (Bounded) Lattice

Let *L* be a poset.

- *L* is a lattice if for all $x, y \in L$, the elements $x \lor y = \bigvee \{x, y\}$ and $x \land y = \bigwedge \{x, y\}$ exist.
- *L* bounded from above (resp. below) if $1_L = \bigwedge \emptyset$ (resp. $0_L = \bigvee \emptyset$) exist.
- *L* is **bounded**, if *L* is bounded from above and below.

Definition: Right *l*-group

A right-ordered group is a group *G* with a partial order \leq such that for all $x, y, z \in G$,

$$x \leq y \Rightarrow xz \leq yz.$$

If (G, \leq) is a lattice, *G* is a right ℓ -group. The negative cone of *G* is $G^- = \{x \in G : x \leq e\}$.

Definition: Strong order unit

Let *G* be a right ℓ -group. An element $s \in G$ is a strong order unit, if

- $x \le y \Leftrightarrow sx \le sy$ holds for all $x, y \in G$,
- for each $g \in G$ there is a $k \in \mathbb{Z}$ such that $s^k \ge g$.

The interval $[s^{-1}, e] = \{x \in G : s \le x \le e\}$ is the respective strong order interval.

Definition: Noetherian

A right ℓ -group *G* is noetherian if every sequence $x_1 \le x_2 \le ...$, all $x_i \le e$, becomes stationary and every sequence $y_1 \ge y_2 \ge ...$, all $y_i \ge e$, becomes stationary.

Definition: (Quasi-)Garside group

- A quasi-Garside group is a noetherian right ℓ -group with a strong order unit s.
- A Garside group is a quasi-Garside group with a *finite* strong order interval $[s^{-1}, e]$.

Examples of Garside groups: Spherical Artin-Tits groups, \mathbb{Z}^n , ...

Some bad problems

- Classify all Garside groups! 🔅
- Find all Garside structures on a given torsion-free group! ^(C)

Some better problems

- Find all Garside groups with a given lattice structure! igodot
- Classify all Garside groups whose lattices fulfill certain identities! igodot

A Garside-theorist's favorite lattice identities!

- Distributivity: $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- Modularity: $x \le z \Rightarrow x \lor (y \land z) = (x \lor y) \land z$
- Distributive lattices: $(\mathcal{P}(X), \subseteq)$, (\mathbb{Z}^n, \leq) , ...
- Modular lattices: $L(R, n) = \{R$ -submodules of $R^n\}$, R unital, under \subseteq, \dots
- Distributivity \Rightarrow Modularity.

Definition: Cycle set

A nondegenerate cycle set (X, \cdot) is a (finite) set with a binary operation $(x, y) \mapsto x \cdot y$, such that

 $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z) \quad \forall x, y, z \in X$ the maps $\sigma_x(y) = x \cdot y$ are bijective for all $x \in X$ the map $x \mapsto x \cdot x$ is bijective.

The structure group of a cycle set X is

 $G(X) = \langle X | (x \cdot y)x = (y \cdot x)y \rangle.$

- Non-degenerate cycle sets are equivalent to set-theoretic solutions to the Yang-Baxter equation,
- *G*(*X*) is equivalent to the structure group of a set-theoretic solution.

Theorem [Chouraqui (2011), Rump (2015)]

- Let X be a nondegenerate cycle set. Then the submonoid $G^- = \langle X^{-1} \rangle \subseteq G(X)$ is the negative cone of a Garside structure on G(X), that has $s = \bigvee X$ as its strong order unit.
- Every distributive Garside group *G* is of this form.
- There is a lattice isomorphism $G \cong \mathbb{Z}^n$.

Modular quasi-Garside groups

Example: Paraunitary groups

Let $A \in K^{n \times n}$ be such that $v \neq 0 \Rightarrow v^{\top}Av \neq 0$ for $v \in K^n$ and $A^{\top} = A$. Then the pure paraunitary group associated with A is

$$\operatorname{PPU}(A) = \left\{ M(t) \in K[t, t^{-1}]^{n \times n} : M(t^{-1})^{\top} A M(t) = A \wedge M(1) = E_n \right\}.$$

Theorem [D. (2019)]

The submonoid $PPU(A)^- = PPU(A) \cap K[t^{-1}]^{n \times n}$ is the negative cone of a quasi-Garside structure on PPU(A). The element $s = t \cdot E_n$ is a strong order unit and

 $[s^{-1}, e] \cong L(K, n).$

- For a cyclic field extensions L/K of degree n, one can construct a quasi-Garside group with a strong order unit s such that $[s^{-1}, e] \cong L(K, n)$. This construction uses skew polynomial rings.
- Rings seem to play a role in the construction of modular quasi-Garside groups...

The distributive scaffold

For x > y, write $x \succ y$ if $x \ge z \ge y$ implies z = x or z = y.

- Let *G* be a modular quasi-Garside group, where $s = \bigvee \{x \in G : x \succ e\}$ exists.
- There is a finite decomposition $[s^{-1}, e] \cong \prod_{i=1}^{k} L_i$ into directly irreducible bounded lattices.
- For $1 \le i \le k$, let $z_i \in [s^{-1}, e]$ correspond to $\varepsilon^{(i)} = (\varepsilon_i^{(i)})_{1 \le j \le k}$ where

$$\varepsilon_j^{(i)} = \begin{cases} \mathbf{0}_j & j = i \\ \mathbf{1}_j & j \neq i \end{cases}$$

and set $\mathcal{Z} = \{z_i : 1 \leq i \leq k\}$.

Theorem [D. (2023)]

 \mathcal{Z} has the structure a nondegenerate cycle set such that the (well-defined) group homomorphism $G(\mathcal{Z}) \to G$ is an embedding of $\mathcal{D}(G) = G(\mathcal{Z})$ as a distributive sublattice.

Definition: Distributive scaffold

The subgroup $\langle \mathcal{Z} \rangle$ is the distributive scaffold of *G*.

Theorem [D. (2023)]

Let *G* be a modular quasi-Garside group with strong order unit $s = \bigvee \{x \in G : x \succ e\}$. Let

$$[s^{-1}, e] \cong \prod_{i=1}^{n} L_i$$

be a decomposition of $[s^{-1}, e]$ into directly irreducible lattices. Then there exist directly irreducible sublattices $\beth_i \subseteq G$ ($1 \le i \le k$) - the beams - such that there is a *lattice-theoretic* decomposition

$$G\cong\prod_{i=1}^{n}\beth_{i}$$

that induces the decompositions

- $[s^{-1}, e] \cong \prod_{i=1}^{k} L_i$
- $\mathcal{D}(G) \cong \prod_{i=1}^{k} \mathbb{Z}.$

 \Rightarrow The decomposition of modular quasi-Garside groups is controlled by $\mathcal{D}(G)$, the structure group of a cycle set!

Some facts

Let *G* be a modular quasi-Garside group with strong order unit $s = \bigvee \{x \in X : x \succ e\}$. Let $[s^{-1}, e] \cong \prod_{i=1}^{k} L_i$ be a decomposition into irreducible lattices.

- By a theorem of Rump, the *L_i* are bounded modular geometric lattices i.e. isomorphic to *L*(*K*, *n*) for some skew field *K* or the subspace lattice of a degenerate geometry or a non-desarguesian plane.
- The associated beams \beth_i can be shown to be primary lattices.

Theorem [D. (2023)]

Let $L_i \cong L(K, n)$ for some $n \ge 4$ and a skew field K. For the associated beam \beth_i , there is a noncommutative discrete valuation field Q with valuation ring R, such that there is a lattice-isomorphism

 $\beth_i \cong \operatorname{Lat}(Q, n)$

 $A = \{A \subseteq Q^n : A \text{ is a finitely generated, essential } R - submodule\}.$

Isotypical components

Let $G \cong \prod_{i=1}^{k} \beth_i$ be the decomposition into beams. Let $i \sim j \Leftrightarrow \beth_i \cong \beth_j$. For $1 \le i \le k$, call $C_i = \prod_{j \sim i} \beth_i$ the isotypical component of \beth_i .

Theorem [D. (2023)]

- C_i corresponds to a convex subgroup $G_i \leq G$.
- If $\beth_i \cong \text{Lat}(Q, n)$, the isotypical subgroup G_i embeds as a subgroup of $S_m \wr \Pr L(_RQ^n)$, *m* the number of $\beth_j \cong \beth_i$, where

 $\mathrm{P}\Gamma L(_{R}Q^{n}) = \left(\mathrm{GL}(n, Q) \rtimes \mathrm{Aut}(R)\right) / R^{\times},$

a generalized projective semilinear group. More precisely,

 $\operatorname{PF} L(_R Q^n) = G \cdot \operatorname{PF} L(_R R^n) \quad ; \quad G \cap \operatorname{PF} L(_R R^n) = 1.$

• *G* is a matched product over all isotypical subgroups!

イロト イヨト イヨト -

Two of my favorite questions

- Question 1: Can every lattice *L*(*K*, *n*) appear as the strong order interval of a modular quasi-Garside group?
- Question 2: What about the subspace lattice of a non-desarguesian plane?
- Only known answers to Question 1: L(K, n) is realizable if there is an anisotropic hermitian form on Kⁿ or if there is a cyclic field extension L/K of degree n.
 In particular, all finite desarguesian geometries L(F_q, n) are strong order intervals!
- No answers to Question 2 are known: even for the Hughes plane (91 points and lines), a computational approach fails (even with an insane amount of RAM!).

\odot Thanks for your attention! \odot

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - りへで