Germs and Sylows for structure group of solutions to the Yang-Baxter equation GRYB23 Conference

Edouard Feingesicht (LMNO, Caen, France)

June 2023, Blankenberge

Yang-Baxter Equation

Set-theoretical solution of the YBE (Drinfeld '92)
(X, r) where X is a set and $r: X \times X \rightarrow X \times X$ a bijection, such that

$$
r_{1} r_{2} r_{1}=r_{2} r_{1} r_{2}
$$

where $r_{i}: X \times X \times X \rightarrow X \times X \times X$ acts on the coordinates i and $i+1$.
For any $X, r(x, y)=(y, x)$ defines a solution.

Definition (Etingof-Schedler-Soloviev '99)

Denote $r(x, y)=(\lambda(x, y), \rho(x, y)) .(X, r)$ is said to be:

- Involutive if $r^{2}=\mathrm{id}_{X \times X}$
- Left non-degenerate (resp. right) if $\lambda(x,-)$ (resp. $\rho(-, y))$ is a bijection for any x (resp. y).

Cycle sets

Cycle set (Rump '05)
$(S, *)$ where S is a set and $*$ a binary operation such that for any s in S the map $\psi(s): t \mapsto s * t$ is bijective, and for all s, t, u in S

$$
(s * t) *(s * u)=(t * s) *(t * u) .
$$

Example: $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $s * s_{i}=s_{\sigma(i)}$, with $\sigma=(12 \ldots n)$ $\left(\psi\left(s_{i}\right)=\sigma\right)$.

Theorem (Rump '05)

There is a bijective correspondence in the finite cases
involutive left non-degenerate solutions \longleftrightarrow Cycle sets

Structure groups

Definition-Proposition (Etingof-Schedler-Soloviev '99, Rump '05)
Define the structure group G (resp. monoid M) by the presentation

$$
\left.\langle X| x y=x^{\prime} y^{\prime} \text { if } r(x, y)=\left(x^{\prime}, y^{\prime}\right)\right\rangle \quad \longleftrightarrow \quad\langle S \mid s(s * t)=t(t * s)\rangle .
$$

Example: $S=\left\{s_{1}, s_{2}\right\}$ with $\psi\left(s_{i}\right)=(12)$ yields $M=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}\right\rangle^{+}$. Suppose S finite and fix an enumeration $S=\left\{s_{1}, \ldots, s_{n}\right\}$.

Representation (Dehornoy '15)

We define the morphism $\Theta: G \rightarrow G L_{n}\left(\mathbb{Q}\left[q, q^{-1}\right]\right)$ induced by

$$
s_{i} \mapsto D_{i} P_{s_{i}}=\operatorname{diag}(1, \ldots, q, \ldots, 1) \cdot P_{\psi\left(s_{i}\right)} .
$$

Example: $\Theta\left(s_{1}\right)=\left(\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & q \\ 1 & 0\end{array}\right)$ et $\Theta\left(s_{2}\right)=\left(\begin{array}{ll}0 & 1 \\ q & 0\end{array}\right)$.

- A monomial matrix m decomposes uniquely as $m=D_{m} P_{m}=P_{m} D_{m}^{\prime}$.

I-Structure

Theorem (l-structure) (Gateva-Ivanova-Van den Bergh '98)

The only permutation matrix in $\Theta(G)$ is the identity.

- In other words, $\Theta(f)$ is uniquely determined by $D_{\Theta(f)}$ for f in G.

Theorem (Dehornoy '15)

Θ is a faithful representation.

- $G<\mathbb{Z}^{n} \rtimes \mathfrak{S}_{n}$ such that projecting on the $1^{\text {st }}$ coordinate is bijective.

Theorem (Chouraqui '10)

G is a Garside group.

- G has a nice "lattice" structure with a preferred element Δ
- B_{n} are Garside groups, they can be "recovered" from \mathfrak{S}_{n}

Dehornoy's class and germ

$s_{i}^{[k]}$ the unique element of G with diagonal part D_{i}^{k}.

$$
s_{2}^{[3]}=\left(\begin{array}{cc}
0 & 1 \\
q^{3} & 0
\end{array}\right)
$$

Proposition (Dehornoy's class)
There exists $d \in \mathbb{N}$ such that $s^{[d]}$ is diagonal for all $s \in S$.
Example: If $S=\left\{s_{1}, \ldots, s_{n}\right\}$ et $\psi\left(s_{i}\right)=(12 \ldots n), d=n$.

Theorem (Germ) (Dehornoy '15)
$\left(M, \Delta^{d-1}\right)$ can be "recovered" from $\bar{G}=G /\left\langle s^{[d]}\right\rangle$ finite.

- $G \rightarrow \bar{G}$ amounts to evaluating $q=\exp \left(\frac{2 i \pi}{d}\right)$.

A conjecture on the class

Using Vendramin's enumeration :

n	$d_{\max }(n)$
3	3
4	4
5	6
6	8
7	12
8	15
9	24
10	30

Maximum of the classes of cycle sets with size n

Conjecture (F.)

$d_{\max }(n)$ is equal to "Maximum of products of distinct partitions of n ".

- Example: $n=9=2+3+4$, and $2 \cdot 3 \cdot 4=24$ is maximal.
- A034893 on the OEIS. And Došlić gave an explicit formula (with T_{m}).

More on Dehornoy's class

Denote $\mathcal{G}<\mathfrak{S}_{n}$ the group generated by the $\psi(s)$'s.

Proposition

If $T: s \mapsto s * s$, we have : $o(T)|d| \# \mathcal{G} \mid d^{n}$.
In particular, d and $\# \mathcal{G}$ have the same prime divisors.

Proposition (F.)

If $s * s=s$ for all s and \mathcal{G} is abelian, the conjecture is verified.

Remark: It is "enough" to classify braces with additive group $(\mathbb{Z} / d \mathbb{Z})^{n}$, $d \leq d_{\max }(n)$.

Sylow for the germs

Theorem (Lebed-Ramírez-Vendramin '22, F.)
$G^{[k]}=\left\langle s^{[k]}\right\rangle$ induces a cycle set structure on $S^{[k]}=\left\{s^{[k]}\right\}_{s \in S}$. Moreover, its class is $\frac{d}{d \wedge k}$ (if $k \leq d$).

- $G^{[k]}$ is the subgroup of G of matrices with coefficients powers that are multiples of k.
- Decompose $d=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, and let $\alpha_{i}=p_{i}^{a_{i}}, \beta_{i}=\frac{d}{\alpha_{i}}$.

Lemma

The $\bar{G}^{\left[\beta_{i}\right]}$ are p_{i}-Sylow of \bar{G}, they commute two by two and their product is \bar{G}.
$\left(H, K<G\right.$ commute means $H K=K H$, i.e $\left.\forall h, k, \exists h^{\prime}, k^{\prime}, h k=k^{\prime} h^{\prime}.\right)$

Reconstructing

This provides an alternative version of the Matched Product (Bachiller '18, Catino-Colazzo-Stefanelli '20) :

Suppose $\left(S, *_{1}\right),\left(S, *_{2}\right)$ are cycle sets of size n and coprime classes d_{1}, d_{2}. In $\mathrm{GL}_{n}(\mathbb{C})$, consider $\bar{G}=\bar{G}_{1} \bar{G}_{2}$.

Theorem (F.)
If $\left(S, *_{1}\right)$ and $\left(S, *_{2}\right)$ satisfy a "mixed" cycle set condition:

$$
\forall s, t, u \in S,\left(s *_{1} t\right) *_{2}\left(s *_{1} u\right)=\left(t *_{2} s\right) *_{1}\left(t *_{2} u\right)
$$

Then \bar{G} induces a cycle set structure on S of class (dividing) $d=d_{1} d_{2}$.
We can restrict to cycle sets of class a prime-power to classify all cycle sets!

Indecomposability

Definition

$(S, *)$ is said to be decomposable if there exists a partition $S=X \sqcup Y$ such that $\left(X,{ }_{\left.\right|_{X}}\right),\left(Y,{ }_{\left.\right|_{Y}}\right)$ are cycle sets. Otherwise $(S, *)$ is called indecomposable.

- Up to a change of enumeration, S is decomposable iff the generators are diagonal by same blocks.

Proposition

If S is indecomposable and $d=p^{k}$, then $n=p^{\prime}$.

- We can "restrict" to cycle sets of size and class powers of the same prime.
Example: $(S, *)$ with $n=16$ and $d=30$ splits as cycle sets of class 2,3 and 5 . Those with class 3 and 5 must be decomposable.

Thank you for your attention!

Some histograms

Some histograms

Abe + SqF $\mathrm{n}=10$

An example

Let $S=\left\{s_{1}, \ldots, s_{6}\right\}$ with $\psi\left(s_{i}\right)=(12 \ldots 6)=\sigma$. Then:

- $s_{i} * s_{i}=s_{\sigma(i)} \Rightarrow T=\sigma$
- $\psi\left(s_{i_{1}} \ldots s_{i_{k}}\right)=\sigma^{k} \Rightarrow d=6$
- $\mathcal{G}=\langle\sigma\rangle \simeq \mathbb{Z} / 6 \mathbb{Z}$
- $G^{[3]}$ is generated by the $s_{i}^{[3]}=D_{i}^{3} P_{\sigma^{3}}$, where $\sigma^{3}=(14)(25)(36)$.
- $S^{[3]}$ is of class 2
- $\bar{G}=\bar{G}^{[2]} \bar{G}^{[3]}, s_{i}=\left(s_{i}^{[2]}\right)^{2} \cdot s_{\sigma^{4}(i)}^{[3]}$

Reconstructing

Denote Σ_{n}^{d} the group of monomial matrices with coefficient powers of ζ_{d}. Define $\iota_{d}^{d k}: \sum_{n}^{d} \hookrightarrow \sum_{n}^{d k}$ sending ζ_{d} to $\zeta_{d k}^{k}$.

- Let $\left(S, *_{1}\right)$ and $\left(S, *_{2}\right)$ be two cycle set structure on S.
- Suppose their classes d_{1} and d_{2} are coprime.
- Denote $\bar{G}_{i}<\sum_{n}^{d_{i}}$ their germs.
- Let $d=d_{1} d_{2}$ and $\bar{G}=\iota_{d_{1}}^{d}\left(\bar{G}_{1}\right) \iota_{d_{2}}^{d}\left(\bar{G}_{2}\right)$.
- Bézout $\Rightarrow \exists u, v \in \mathbb{N}, d_{2} u+d_{1} v=1[d] \Rightarrow \forall s \in S, \exists g \in \bar{G}, D_{g}=D_{s}$.

Does \bar{G} induces a cycle set structure on S ?

- No in general. Yes if \bar{G}_{1} and \bar{G}_{2} commute in Σ_{n}^{d} !

Example

$$
\begin{array}{rlrl}
S= & \left\{s_{1}, \ldots, s_{6}\right\} \text { with }\left(S^{\prime}, *_{1}\right) \text { et }\left(S^{\prime \prime}, *_{2}\right) \text { given by: } & \\
\psi_{1}\left(\left\{s_{1}^{\prime}, \ldots, s_{6}^{\prime}\right\}\right)=(14)(25)(36) & d_{1}=2 \\
& \psi_{2}\left(\left\{s_{1}^{\prime \prime}, s_{3}^{\prime \prime}, s_{5}^{\prime \prime}\right\}\right)=(135) & \psi_{2}\left(\left\{s_{2}^{\prime \prime}, s_{4}^{\prime \prime}, s_{6}^{\prime \prime}\right\}\right)=(246) & d_{2}=3
\end{array}
$$

- $3 u+2 v=1[6] \Rightarrow u=1, v=2$
- $\iota_{2}^{6}\left(\overline{s_{1}^{\prime}}[1]\right)=\iota_{2}^{6}\left(\begin{array}{llllll}0 & 0 & 0 & \zeta_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lllllll}0 & 0 & 0 & \zeta_{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

$$
\left.\overline{s_{i}}=\iota_{2}^{6} \overline{\left(s_{i}^{[[u]}\right.}\right) \iota_{3}^{6} \overline{\left(s_{\psi\left(\frac{\left.s_{i}^{[\prime]}\right)(i)}{[L]}\right.}\right)}
$$

$$
-\iota_{3}^{6}\left({\overline{s_{4}^{\prime \prime}}}^{[2]}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & \left(\zeta_{6}^{2}\right)^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

$$
\overline{s_{1}}=\left(\begin{array}{llllll}
0 & \zeta_{6} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \Rightarrow \text { We take } \psi\left(s_{1}\right)=(125634)
$$

- We find: $\psi\left(\left\{s_{1}, s_{3}, s_{5}\right\}\right)=(125634), \psi\left(\left\{s_{2}, s_{4}, s_{6}\right\}\right)=(145236)$

