Stability and W-Categoricity of Skew Braces

Maria Ferrara

maria.ferrara1@unicampania.it Università degli Studi della Campania "Luigi Vanvitelli"

Groups, Rings and the Yang-Baxter equation 2023

June 19-23, 2023

Università degli Studi della Campania Luigi Vanvitelli

M.F.

Marco Trombetti

Università degli Studi di Napoli Federico II, Italy

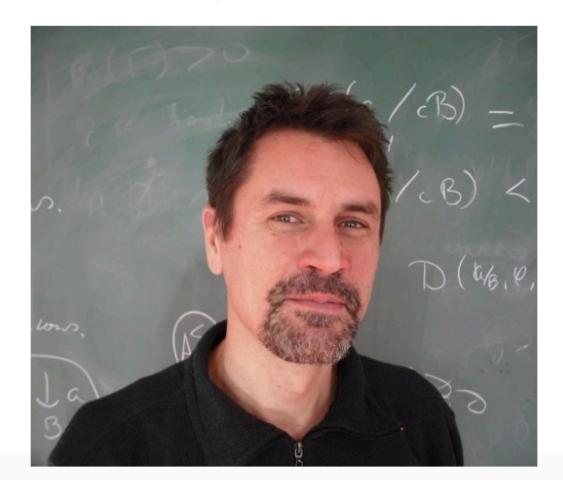
M.F.

Marco Trombetti

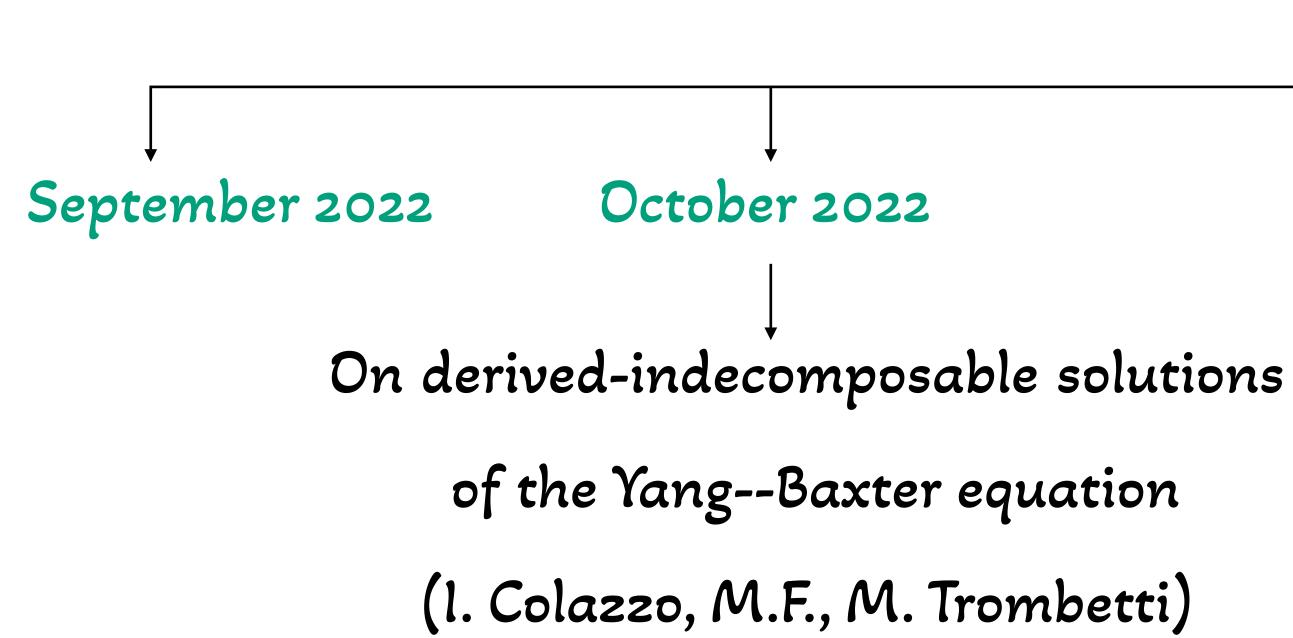
Università degli Studi di Napoli Federico II, Italy

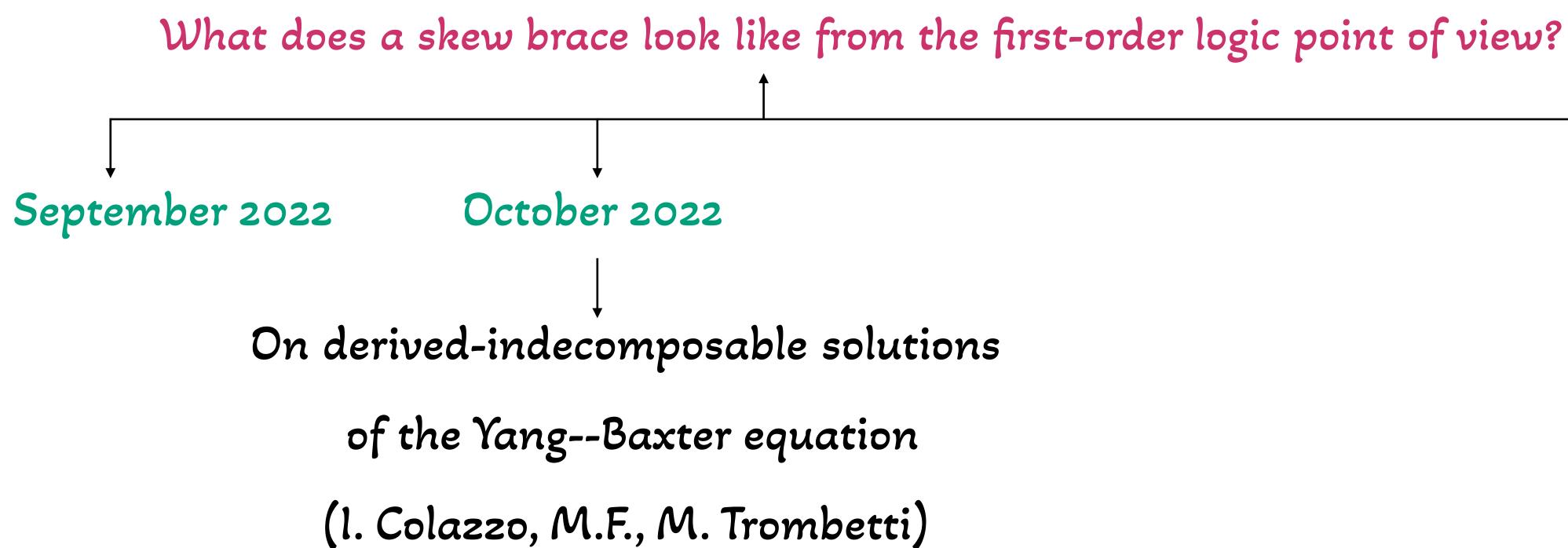
Marco Trombetti

Università degli Studi di Napoli Federico II, Italy

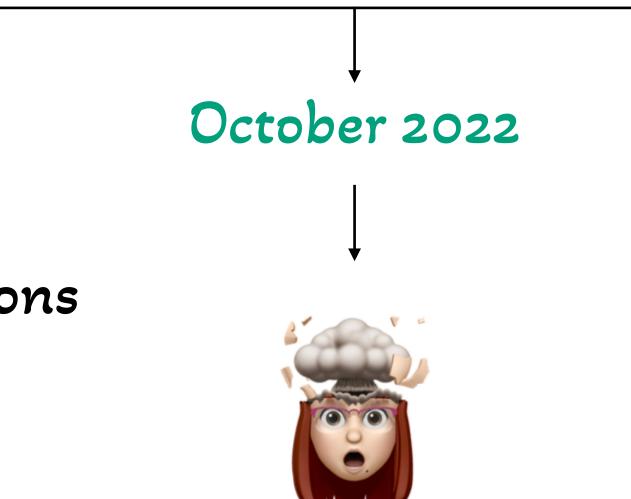


Frank O. Wagner, Université de Lyon, France

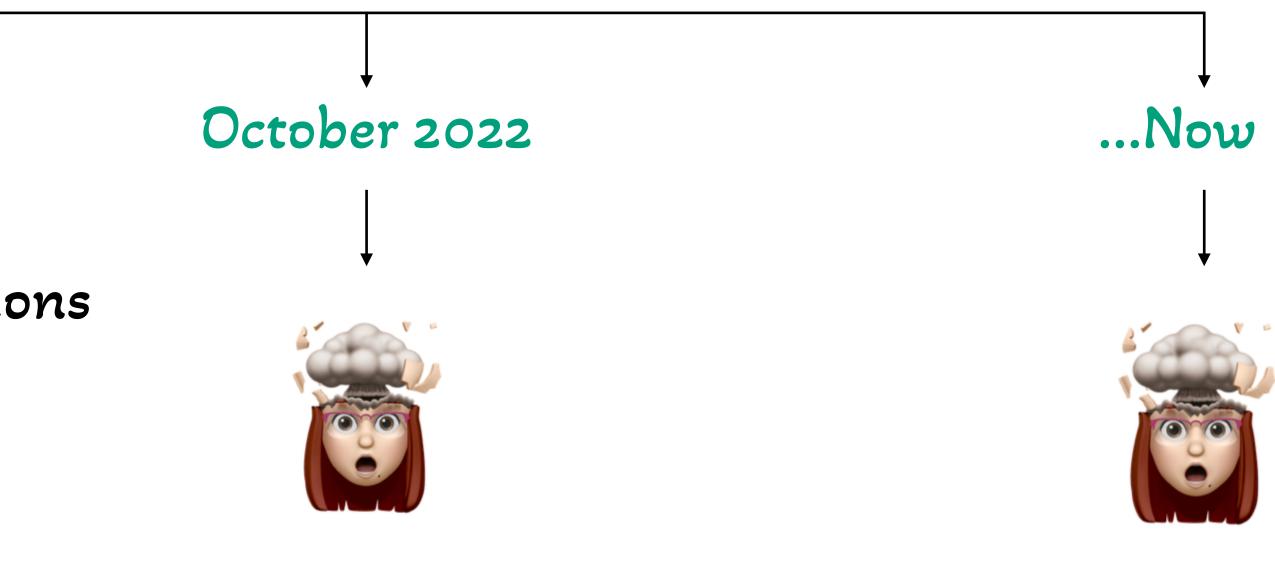




What does a skew brace look like from the first-order logic point of view? October 2022 October 2022 September 2022 On derived-indecomposable solutions of the Yang--Baxter equation (I. Colazzo, M.F., M. Trombetti)



What does a skew brace look like from the first-order logic point of view? October 2022 October 2022 September 2022 On derived-indecomposable solutions of the Yang--Baxter equation (I. Colazzo, M.F., M. Trombetti)



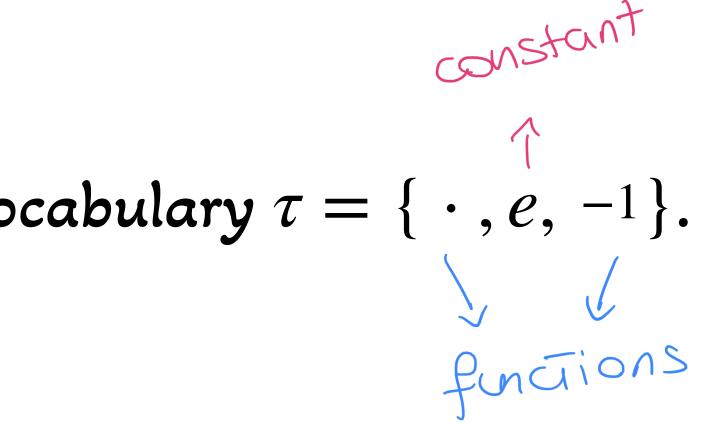
A vocabulary (or alphabet) τ is a set consisting of relation symbols, function

symbols and constant symbols.

A vocabulary τ is a set consisting of relation symbols, function symbols and constant symbols.

For example, in a group we use the vocabulary $\tau = \{ \cdot, e, -1 \}$.

First-order logic



Now, fix a vocabulary τ .

- relations $R^A \subseteq A^n$ for every n-ary relation symbol $R \in \mathcal{T}$,
- functions $f^A : A^m \to A$ for every m-ary function symbol $f \in \tau$,

• constants $c^A \in A$ for every constant symbol $c \in \tau$.

A structure A for τ (a τ -structure) is a non-empty set A together with

G satisfying the following sentences:

- (G1) $\forall x \forall y \forall z((x \cdot y) \cdot z = x \cdot (y \cdot z))$
- (G2) $\forall x(e \cdot x = x \land x \cdot e = x)$
- (G3) $\forall x(x \cdot x^{-1} = e \land x^{-1} \cdot x = e)$

If we use the vocabulary $\tau = \{ \cdot, e, -1 \}$, we can say that a group is a τ -structure

G satisfying the following sentences:

- (G1) $\forall x \forall y \forall z((x \cdot y) \cdot z = x \cdot (y \cdot z))$
- (G2) $\forall x(e \cdot x = x \land x \cdot e = x)$
- (G3) $\forall x(x \cdot x^{-1} = e \land x^{-1} \cdot x = e)$

If we use the vocabulary $\tau = \{ \cdot, e, -1 \}$, we can say that a group is a τ -structure

An ordered ring R is a structure on the vocabulary $\tau = \{0, 1, +, \cdot, < \}$, where

- 0,1 are constants,
- $+, \cdot$ are functions,
- < is a relation,

and they are interpreted in accordance with the axioms of the ordered rings.

Before defining formulas, let us define terms.

finitely many applications of the following rules:

A term over τ is a finite sequence of characters that can be obtained by

(T1) All constant symbols in τ and all variables are terms.

 $f(t_1, \ldots, t_n)$ is a term.

First-order logic

(T2) If t_1, \ldots, t_n are terms and $f \in \tau$ is an n-ary function symbol, then

A first-order formula over τ is a finite sequence of characters that can be

obtained by finitely many applications of the following rules:

First-order logic

(F1) If t_1 and t_2 are terms over τ , then $(t_1 = t_2)$ is a formula. then $R(t_1, \ldots, t_n)$ is a formula. (F3) If φ is a formula, then so is $\neg \varphi$. (F4) If φ and ψ are formulas, then $(\varphi \lor \psi)$ is a formula. (F5) If φ is a formula and x is a variable, then $\exists x \varphi$ is a formula.

- (F2) If $R \in \tau$ is an n-ary relation symbol and if t_1, \ldots, t_n are terms over τ ,

If ϕ and ψ are formulas, we use $(\varphi \land \psi)$ as abreviations for $\neg (\neg \varphi \lor \neg \psi)$, $(\varphi \rightarrow \psi)$ as abreviations for $(\neg \varphi \lor \psi)$, $(\varphi \leftrightarrow \psi)$ as abreviations for $\neg (\neg (\neg (\varphi \lor \psi) \lor \neg (\varphi \lor \neg \psi)))$, $\forall x \phi$ as abreviations for $\neg \exists x \neg \phi$.

A variable x occurs freely in φ if x occurs outside the scope of a quantifier $\exists x$ or $\forall x$.

Example : $\forall y(y=0) \rightarrow (x=0)$

A variable x occurs freely in φ if x occurs outside the scope of a quantifier $\exists x$ or $\forall x$. A formula without free variables is a sentence.

A variable x occurs freely in φ if x occurs outside the scope of a quantifier $\exists x$ or $\forall x$. A formula without free variables is a sentence. A formula is atomic if it contains no quantifiers or logical connectives \neg , \lor .

First-order logic

don't specify a structure in which interpret them.

 $V: \{x_{1}, \dots, x_{n}\} \longrightarrow V(x_{i}) = a_{i} \in A$

Now, for every formula $\varphi(x_1, \ldots, x_n)$ and all $a_1, \ldots, a_n \in A$ we define the validity

of $\varphi(a_1, \ldots, a_n)$ in A:

Note: The terms and the formulas haven't meaning if we

Now, for every formula $\varphi(x_1, \ldots, x_n)$ and all $a_1, \ldots, a_n \in A$ we define the validity of $\varphi(a_1, \ldots, a_n)$ in A:

• If $\varphi(x_1, \ldots, x_n)$ and $\psi(x_1, \ldots, x_n)$ are formulas, then $(\varphi \lor \psi)(a_1, \ldots, a_n)$ holds in A if and only if at least one of $\varphi(a_1, \ldots, a_n)$ and $\psi(a_1, \ldots, a_n)$ holds in A.

• If $\varphi(x_1, ..., x_n)$ is a formula, then $\neg \varphi(a_1, ..., a_n)$ holds in A if and only if $\varphi(a_1, ..., a_n)$ does not hold in A.

• If $\varphi(x_1, \ldots, x_n)$ is a formula, then $\neg \varphi(a_1, \ldots, a_n)$ holds in A if and only if $\varphi(a_1, \ldots, a_n)$ does not hold in A.

is $a \in A$ such that $\varphi(a, a_1, \dots, a_n)$ holds in A.

• If $\varphi(x, x_1, \dots, x_n)$ is a formula, then $\exists x \varphi(a_1, \dots, a_n)$ holds in A if and only if there

If $\varphi(a_1, \ldots, a_n)$ holds in A, we write $A \models \varphi(a_1, \ldots, a_n)$.

First-order logic

If $\varphi(a_1, \ldots, a_n)$ holds in A, we write $A \models \varphi(a_1, \ldots, a_n)$.

Let Φ be a set of formulas over τ .

A is a model of Φ .

If Φ holds in A with respect to every assignment, then we write $A \models \Phi$ and say that

A theory over a vocabulary τ is a set of sentences over τ .

A theory over a vocabulary τ is a set of sentences over τ .

Given a structure A, the theory of A is the set Th(A) of all sentences ϕ over τ such that $A \models \varphi$.

Group theory is the theory of the class of all groups.

Let B be a set.

Let B be a set.

If (B, +) and (B, \circ) are groups

Let B be a set.

If (B, +) and (B, \circ) are groups, then the triple $(B, +, \circ)$ is a skew (left) brace if the skew (left) distributive property

holds for all $a, b, c \in B$.

$a \circ (b + c) = a \circ b - a + a \circ c$

Let $(B, +, \circ)$ be a skew (left) brace.

Let $(B, +, \circ)$ be a skew (left) brace. Recale that in a grap(Gi), [x,y] [a,b], and [a,b] will denote respectively the commutator in (B, +) and (B, -) of a and b.

Skew braces

$$= xy \times y^{-1}$$

The map $\lambda : a \in (B, \circ) \mapsto \lambda_a \in Aut(B, +)$

where $\lambda_a(b) = -a + a \circ b$

 λ is a group homomorphism.

It is possible (and is actually very useful!) to take into account the natural semidirect product

where

 $(a,b)(c,d) = (a + \lambda_b(c), b \circ d)$

for all $a, b, c, d \in B$.

Skew braces

$G = (B, +) \rtimes (B, \circ)$

In analogy with ring theory, a third relevant (non-necessarily associative) operation in skew braces is defined as follows

for all $a, b \in B$.

Skew braces

$a \star b = \lambda_a(b) - b = -a + a \circ b - b$

\star -operation corresponds to a commutator of type

for all $a, b \in B$.

Skew braces

- Taking into account $G = (B, +) \rtimes (B, \circ)$, an easy computation shows that the
 - $[(0, a), (b, 0)] = (a \star b, 0)$

A left ideal of a skew brace B is a subgroup I of (B, +) such that $\lambda_a(I) \subseteq I$ for all $a \in B$.

An ideal of a skew brace B is a left ideal that is normal in (B, +) and (B, \circ) .

The socle of B is defined as

$Soc(B) = Ker(\lambda) \cap Z(B, +)$

The socle of B is defined as

where Z(B, +) is the center of (B, +)

$Soc(B) = Ker(\lambda) \cap Z(B, +)$

The socle of B is defined as

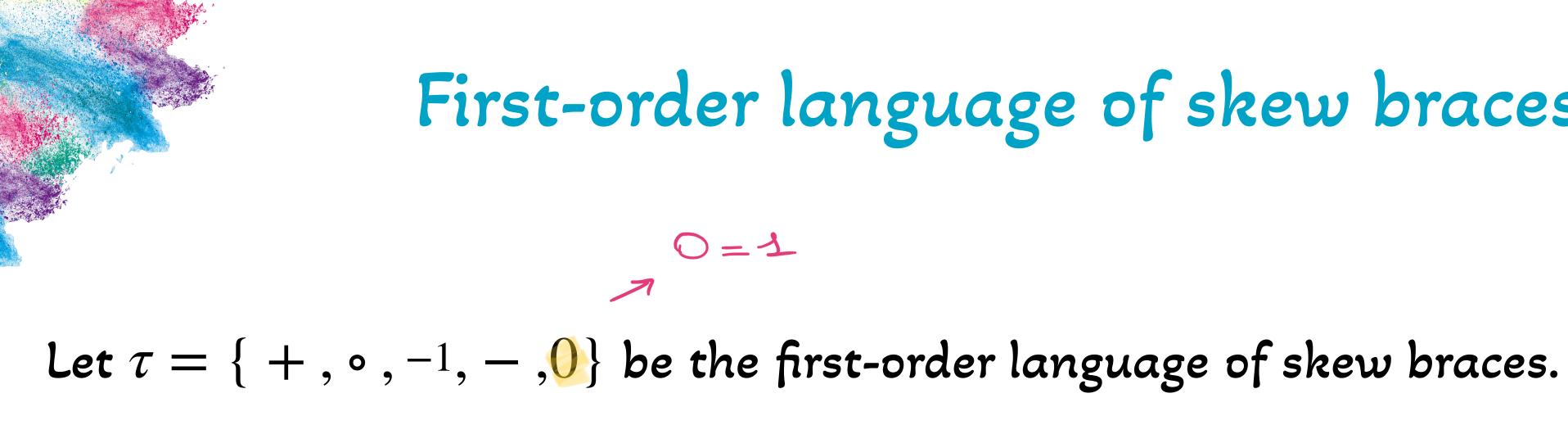
The annihilator of B is defined as

$Soc(B) = Ker(\lambda) \cap Z(B, +)$

is the center $of(B, \circ)$ $Ann(B) = Soc(B) \cap Z(B, \circ)$

Let $\tau = \{ +, \circ, -1, -, 0 \}$ be the first-order language of skew braces.

- In what follows, a formula is just an au-formula, that is, a formula in the language au.



- In what follows, a formula is just an au-formula, that is, a formula in the language au.

Let $\tau = \{ +, \circ, -1, -, 0 \}$ be the first-order language of skew braces.

Let B be a skew brace.

Then $Th(B) = \{ \varphi : B \models \varphi \}$ denotes the first-order theory of B.

- In what follows, a formula is just an τ -formula, that is, a formula in the language τ .

Let $\tau = \{ +, \circ, -1, -, 0 \}$ be the first-order language of skew braces.

Let B be a skew brace. Then $Th(B) = \{ \varphi : B \models \varphi \}$ denotes the first-order theory of B. Hence, Th(B) is the set of all sentences Pover & such that B=P.

- In what follows, a formula is just an τ -formula, that is, a formula in the language τ .

A subset X of B is definable if $X = \{b \in B : B \models \varphi(b)\}$ for some formula $\varphi(x)$.

A subset X of B is definable if $X = \{b \in B : B \models \varphi(b)\}$ for some formula $\varphi(x)$.

X is parametrically definable if $X = \{b \in B : B \models \varphi(b, a_1, ..., a_n)\}$ for some formula $\varphi(x, y_1, \dots, y_n)$ and some $a_1, \dots, a_n \in B$, (in this case, X is also called *n*-definable).

A skew brace B is ω -categorical if every countable skew brace which has the same first-order theory as B is isomorphic to B.

ω -categorical if and only if, for every $n \in \omega$, Th(B) has only finitely many *n*-types.

A well-known theorem of Engeler, Ryll–Nardzewski and Svenonius states that B is

Fix a vocabulary τ .

Fix a vocabulary τ .

Let M be au-structure.

Fix a vocabulary τ .

Let M be τ -structure.

Let $n \in \mathbb{N}$ and let $\overline{a} = (a_1, \dots, a_n) \in M^n$.

Fix a vocabulary τ . Let M be τ -structure. Let $n \in \mathbb{N}$ and let $\overline{a} = (a_1, \ldots, a_n) \in M^n$. The types of \overline{a} in M is

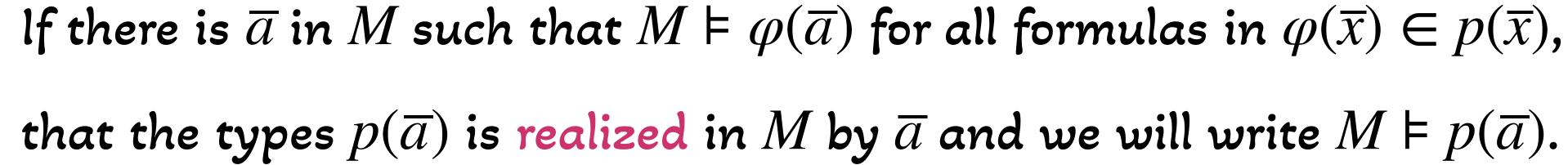
 $tp_M(\overline{a}) = \{\varphi(\overline{x}) : M \models \varphi(\overline{a})\}$ So, this is the set of all formulos $\Psi(x)$ such that $H \models \Psi(\overline{\alpha})$

Let M be τ -structure and let $\overline{x} = (x_1, ..., x_n)$ be distinct variables. A *n*-types $p(\overline{x})$ of M is a set of formulas over τ , $p(\overline{x}) = \{\varphi_i(\overline{x}) : i \in I\}$ that is finitely realized in M.

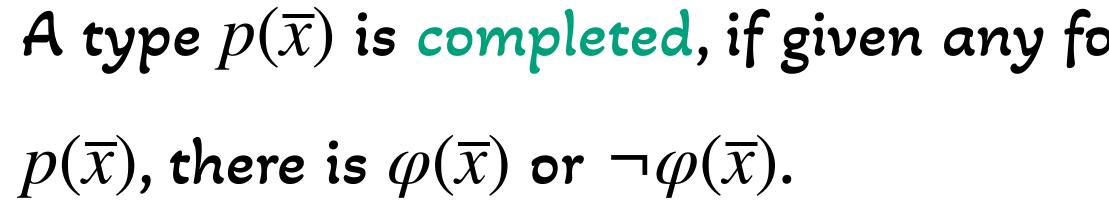
Let M be τ -structure and let $\overline{x} = (x_1, \dots, x_n)$ be distinct variables. A *n*-types $p(\overline{x})$ of M is a set of formulas over τ , $p(\overline{x}) = \{\varphi_i(\overline{x}) : i \in I\}$ that is finitely realized in M.

element $\overline{a} = (a_1, ..., a_n) \in M$ such that $M \models \bigwedge \varphi_i(\overline{a})$.

This means that, for every finite subset $\varphi_1(\overline{x}), \ldots, \varphi_k(\overline{x})$ of $p(\overline{x})$, there exists an $i \leq k$



If there is \overline{a} in M such that $M \models \varphi(\overline{a})$ for all formulas in $\varphi(\overline{x}) \in p(\overline{x})$, we will say



A type $p(\overline{x})$ is completed, if given any formula $\varphi(\overline{x})$, among the logic implications of

A well-known theorem of Engeler, Ryll-N ω -categorical if and only if, for every $n \in$

- A well-known theorem of Engeler, Ryll–Nardzewski and Svenonius states that ${\cal B}$ is
- ω -categorical if and only if, for every $n \in \omega$, Th(B) has only finitely many *n*-types.

W-categorical

complete theory. Then the following are equivalent: (a). T is ω -categorical. (d). For each $n < \omega$, T has only finitely many types in $x_1, ..., x_n$.

$$(a) \rightarrow (b) \rightarrow (c) \rightarrow$$

Each of the six equivalent conditions is interesting in its own right.

- THEOREM 2.3.13 (Characterization of ω -Categorical Theories). Let T be a
- **PROOF.** The reader is advised to sit down before beginning this proof. We shall prove the equivalence of (a) and (d) by proving a chain of implications
 - (d) \rightarrow (e) \rightarrow (f) \rightarrow (a).

MODEL THEORY C.C. CHANG H.J. KEISLER

complete theory. Then the following are equivalent: (a). T is ω -categorical. (d). For each $n < \omega$, T has only finitely many types in $x_1, ..., x_n$.

$$(a) \rightarrow (b) \rightarrow (c) \rightarrow$$

Each of the six equivalent conditions is interesting in its own right.

- THEOREM 2.3.13 (Characterization of ω -Categorical Theories). Let T be a
- PROOF. The reader is advised to sit down before beginning this proof. We shall prove the equivalence of (a) and (d) by proving a chain of implications
 - (d) \rightarrow (e) \rightarrow (f) \rightarrow (a).

Let *m* be a an infinite cardinal.

m-stable, stable, unstable

Let m be a an infinite cardinal.

the set of complete types over A has cardinality m.

The skew brace B is *m*-stable if and only if, for every subset A of B of cardinality m,

Let m be a an infinite cardinal.

The skew brace B is stable if it is m'-stable for some infinite cardinal m'.

A theory that is not stable is unstable.

m-stable, stable, unstable

It turns out that an ω -stable skew brace is m-stable for every infinite cardinal m.

If B is an W-categorical skew brace, then (B, +) and (B, \circ) have finite exponent.

The exponent of a group is the least natural number n such that gⁿ=1, for all gEG.

If B is an W-categorical skew brace, then (B, +) and (B, \circ) have finite exponent.

In particular $(B, +) \rtimes_{\lambda} (B, \circ)$ has finite exponent.

Let B be a countably infinite ω -categorical skew brace. of B.

Then a subset of B is definable if and only if it is invariant under all automorphisms

Some results

Let B be a skew brace, $N = (B, +), X = (B, \circ)$ and $G = N \rtimes_{\lambda} X$.

stable) because the function λ is defined in terms of + and \circ .

Moreover, it is also clear that both N and X are ω -categorical (resp. stable).

- If B is ω -categorical (resp. stable), we easily see that G is ω -categorical (resp.

If B is ω -categorical (resp. stable), then also B/I is ω -categorical (resp. stable) for any definable ideal I of B.

If B is ω -categorical (resp. stable), ther ω -categorical (resp. stable).

If B is ω -categorical (resp. stable), then also every definable sub-skew brace of B is

The aim of this section is to describe the abstract structure of an arbitrary ω -categorical stable skew brace.

Structural results

Theorem (M.F., M. Trombetti, F. Wagner)

Structural results

Let B be a ω -categorical skew brace and let $\phi(x_0, x_1, \dots, x_n)$ be a formula.

Theorem (M.F., M. Trombetti, F. Wagner) Let B be a ω -categorical skew brace and let $\phi(x_0, x_1, \dots, x_n)$ be a formula.

Then there are formulas $\phi^*(x_0, x_1, \dots, x_n)$ and $\phi^{**}(x_0, x_1, \dots, x_n)$ such that the following properties hold.

Structural results

Theorem (M.F., M. Trombetti, F. Wagner) Let B be a ω -categorical skew brace and let $\phi(x_0, x_1, \dots, x_n)$ be a formula. Then there are formulas $\phi^*(x_0, x_1, \ldots, y_n)$ following properties hold.

Let $b_1, ..., b_n$ and put $T = \{b \in B : B \models \phi(b, b_1, ..., b_n)\}.$

Structural results

$$(x_n)$$
 and $\phi^{**}(x_0, x_1, \ldots, x_n)$ such that the

Theorem (M.F., M. Trombetti, F. Wagner)

(1) If C is the sub-skew brace generated by T, then $C = \{ b \in B : B \models \phi^*(b, b_1, ..., b_n) \}.$

Structural results

Moreover, if T has finite order n, then C is finite of order f(n) depending only on n.

Theorem (M.F., M. Trombetti, F. Wagner)

(2) If I is the ideal generated by T, then $C = \{b \in B : B \models \phi^{**}(b, b_1, \dots, b_n)\}.$

Structural results

Corollary (M.F., M. Trombetti, F. Wagner) Let B be an ω -categorical skew brace. Then $B \star B$ is definable.

Structural results

A skew brace B is locally-finite if every finitely generated sub-skew brace is finite.

sub-skew brace generated by n elements has order at most f(n).

A skew brace B is locally-finite if every finitely generated sub-skew brace is finite.

Moreover, B is uniformly-locally-finite if there is a function $f: \omega \to \omega$ such that the

Corollary (M.F., M. Trombetti, F. Wagner) Let B be an ω -categorical skew brace. Then B is uniformly-locally-finite.

Structural results

in

I. Colazzo – M. F. – M. Trombetti:

On derived-indecomposable solutions of the Yang-Baxter equation

Applications

A first observation comes from the skew theoretic analog of a group with finitely many conjugates (FC-groups): these skew braces have been introduced and studied

An FC. group is a group in which every element has only finitely many conjugates. (G,) is a group. Let x, ye G. x and y are conjugate if there is ge G much that gag'= b

many elements of the form $b \star c, c \star b, [b, c]_{\circ}, [b, c]_{+}$ with $c \in B$.

with $c \in B$.

Applications

A skew brace B is said to have the property (S) if, for each $b \in B$, there are finitely

A skew brace B is said to have the property (BS) if there is $n \in \omega$, such that, for every $b \in B$, there are at most n elements of the form $b \star c, c \star b, [b, c]_{\circ}, [b, c]_{+}$

Theorem (I.Colazzo, M.F., M. Trombetti) A skew brace has the property (*BS*) if and only if $B \star B$ and $[B, B]_+$ are finite.

Theorem (I.Colazzo, M.F., M. Trombetti) A skew brace has the property (BS) if and only if $B \star B$ and $[B, B]_+$ are finite.

The following is an immediate consequence of the Engeler-Ryll-Nardzewski-Svenonius theorem.

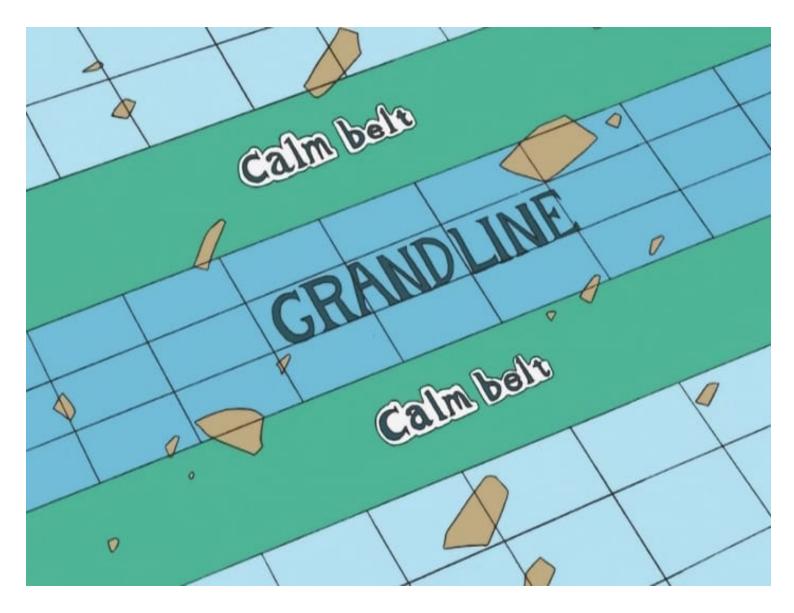
Theorem (M.F., M. Trombetti, F. Wagner) Let R be an ω -categorical skew brace TI

(1) B has property (S)
(2) B has property (BS)

Let B be an ω -categorical skew brace. The following are equivalent:

Theorem (M.F., M. Trombetti, F. Wagner) Let B be an ω -categorical skew brace. The following are equivalent:

(1) B has property (S)
(2) B has property (BS)



The first nilpotency concept we deal with is annihilator-nilpotency. Let B be a skew brace.

We define the upper annihilator series of B as follows

Annihilator-nilpotency

Put $Ann_0(B) = \{0\}$; for any ordinal α , let $Ann_{\alpha+1}(B)/Ann_{\alpha}(B) = Ann(B/Ann_{\alpha}(B))$.

If ν is a limit ordinal, let $Ann_{\nu}(B) = \bigcup$ $\alpha < \nu$

annihilator-length of B.

The last term of the upper annihilator series is the hyper-annihilator of B and is denoted by $\overline{Ann}(B)$.

Annihilator-nilpotency

$$Ann_{\alpha}(B).$$

The smallest ordinal number a(B) such that $Ann_{a(B)}(B) = Ann_{a(B)+1}(B)$ is the

If $B = Ann_n(B)$ for some $n \in \omega$, we say that B is annihilator-nilpotent.

If $B = \overline{Ann}(B)$ we say that B is annihilator-hypercentral.

Annihilator-nilpotency

If $B = Ann_n(B)$ for some $n \in \omega$, we say that B is annihilator-nilpotent.

If B = Ann(B) we say that B is annihilator-hypercentral.

of B is annihilator-nilpotent.

Annihilator-nilpotency

- Moreover, B is locally-annihilator-nilpotent if every finitely generated sub-skew brace

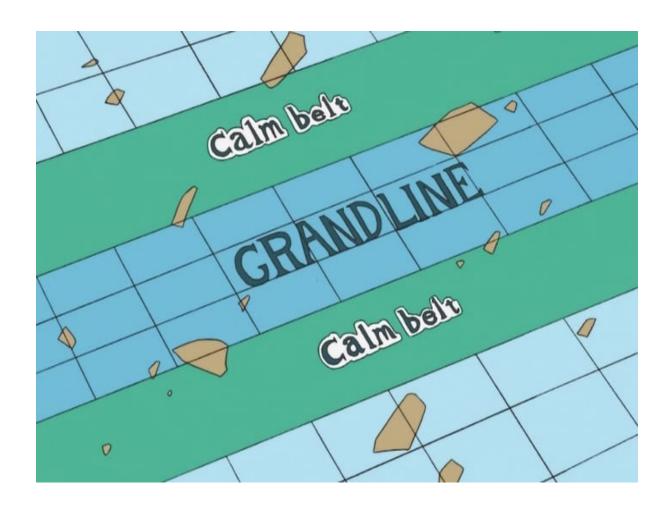
The aim of this section is to show that most of time these nilpotency concepts coincide for categorical/stable skew braces.

Theorem (M.F., M. Trombetti, F. Wagner) Let B be an ω -categorical, stable skew brace. The following statements are equivalent:

(1) B is locally-annihilator-nilpotent
(2) B is annihilator-nilpotent

Theorem (M.F., M. Trombetti, F. Wagner) Let B be an ω -categorical, stable skew brace. The following statements are equivalent:

(1) B is locally-annihilator-nilpotent
(2) B is annihilator-nilpotent



Let B be a skew brace and let S, T subsets of B.

Put $R_0(S, T) = S$ and

 $R_n(S,T) =$

for n > 0.

Thus $R_m(S, T)$ is recursively defined for every non-negative integer m.

$$= R_{n-1}(S,T) \star T$$

B is right nilpotent if and only if there is some integer c such that $R_c(B, B) = \{0\}$.

Right nilpotency was introduced by Rump for braces.

Right nilpotency

B is right nilpotent if and only if there is some integer c such that $R_c(B, B) = \{0\}$.

Right nilpotency was introduced by Rump for braces.

W. Rump

"Braces, radical rings, and the quantum Yang-Baxter equation"

J. Algebra 307 (2007), 153-170.

Right nilpotency

F. Cedò, A. Smoktunowicz, L. Vendramin "Skew left braces of nilpotent type" Proc. London Math. Soc. (6) 118 (2019), 1367-1392.

A. Smoktunowicz, L. Vendramin "On skew braces (with an appendix by N. Byott and L. Vendramin)" J. Comb. Algebra 2 (2018), no. 1, 47-86.

Theorem (M.F., M. Trombetti, F. Wagner) statements are equivalent: (1) B is right nilpotent (2) B is locally-right nilpotent (3) B has a finite s-series (4) $B = Soc_n(B)$ for some $n \in \omega$

Right nilpotency

(B,+) is n'epotent

Let B be a ω -categorical, stable skew brace of nilpotent type. Then the following

Right nilpotency

Theorem (M.F., M. Trombetti, F. Wagner) Let B be a ω -categorical, stable skew brace of nilpotent type. Then the following Askewbrace Bis said to be statements are equivalent: locally-right-hilpotent if every finitely generated mb. skew brace (1) B is right nilpotent of Bis night niepotent. (2) B is locally-right nilpotent (3) B has a finite s-series (4) $B = Soc_n(B)$ for some $n \in \omega$

Let B be a skew brace and let X, Y be subsets of B.

Put $L_0(X, Y) = Y$ and

 $L_n(X, Y) = X \star L_{n-1}(X, Y)$

for n > 0.

Thus $L_m(X, Y)$ is recursively defined for every non-negative integer m.

B is left nilpotent if and only if there is some integer c such that $L_c(B, B) = \{0\}$.

F. Cedò, A. Smoktunowicz, L. Vendramin "Skew left braces of nilpotent type" Proc. London Math. Soc. (6) 118 (2019), 1367-1392. For a finite skew brace B of nilpotent type, being left nilpotent is equivalent to (B, \circ) being nilpotent.

Here, we extend this result to ω -categorical, stable skew brace.

Left nilpotency

Theorem (M.F., M. Trombetti, F. Wagner) Let B be a ω -categorical, stable skew brace of nilpotent type. If C is any sub-skew brace of B, the following statements are equivalent:

(1) C is left nilpotent (2) (C, \circ) is nilpotent

A skew brace B is left nil if for every $b \in B$ there is $n \in \omega$ such that

 $b \star (b \star (\dots \star b) \dots)) = 0$

n times

Left nil

A. Smoktunowicz

"A note on set-theoretic solutions of the Yang-Baxter equation" J. Algebra 500 (2018), 3-18.

Smoktunowicz proved that if B is finite and (B, +) is abelian, then B is left nil if and only if it is left nilpotent.

Theorem (M.F., M. Trombetti, F. Wagner) statements are equivalent:

(1) C is left nil (2) C is left nilpotent

Let B be a ω -categorical, stable brace. If C is any sub-skew brace of B, the following

Thank you for listening!

