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First-order logic 

A vocabulary (or alphabet) τ is a set consisting of relation symbols, function 

symbols and constant symbols. 



First-order logic 

A vocabulary τ is a set consisting of relation symbols, function symbols and 

constant symbols. 

For example, in a group we use the vocabulary . τ = { ⋅ , e, −1}



First-order logic 

Now, fix a vocabulary τ. 

 A structure  for τ (a τ-structure) is a non-empty set  together with 

• relations   for every n-ary relation symbol R ∈ τ, 

• functions  for every m-ary function symbol f ∈ τ,  

• constants  for every constant symbol c ∈ τ.  

A A

RA ⊆ An

fA : Am → A

cA ∈ A



Example

If we use the vocabulary , we can say that a group is a -structure 

 satisfying the following sentences: 

• (G1)  

• (G2)  

• (G3)  

τ = { ⋅ , e, −1} τ

G

∀x∀y∀z((x ⋅ y) ⋅ z = x ⋅ (y ⋅ z))
∀x(e ⋅ x = x ∧ x ⋅ e = x)
∀x(x ⋅ x−1 = e ∧ x−1 ⋅ x = e)
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G
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Example

An ordered ring  is a structure on the vocabulary ,  

where  

•  are constants, 

• are functions, 

•  is a relation, 

and they are interpreted in accordance with the axioms of the ordered rings. 

R τ = {0, 1, + , ⋅ , < }

0,1
+, ⋅
<



First-order logic 

Before defining formulas, let us define terms. 

A term over τ is a finite sequence of characters that can be obtained by 

finitely many applications of the following rules: 



First-order logic 

(T1) All constant symbols in τ and all variables are terms. 

(T2) If  are terms and f ∈ τ is an n-ary function symbol, then 

 is a term.  

t1, …, tn

f(t1, …, tn)



First-order logic 

A first-order formula over τ is a finite sequence of characters that can be 

obtained by finitely many applications of the following rules: 



First-order logic 

(F1) If  and 2 are terms over τ, then  is a formula. 

(F2) If R ∈ τ is an n-ary relation symbol and if  are terms over τ, 

then  is a formula. 

(F3)  If  is a formula, then so is . 

(F4) If  and  are formulas, then  is a formula. 

(F5)  If  is a formula and  is a variable, then  is a formula. 

t1 t2 (t1 = t2)

t1, …, tn

R(t1, …, tn)
φ ¬φ

φ ψ (φ ∨ ψ)
φ x ∃xφ

Maria Ferrara



First-order logic  

If  and  are formulas, we use 

 as abreviations for , 

 as abreviations for , 

 as abreviations for , 

 as abreviations for . 

φ ψ

(φ ∧ ψ) ¬(¬φ ∨ ¬ψ)
(φ → ψ) (¬φ ∨ ψ)
(φ ↔ ψ) ¬(¬(¬(φ ∨ ψ) ∨ ¬(φ ∨ ¬ψ))
∀xφ ¬∃x¬φ



A variable  occurs freely in  if  occurs outside the scope of a quantifier  or . 

 

  

x φ x ∃x ∀x

First-order logic  



A variable  occurs freely in  if  occurs outside the scope of a quantifier  or . 

A formula without free variables is a sentence. 

 

  

x φ x ∃x ∀x

First-order logic  



A variable  occurs freely in  if  occurs outside the scope of a quantifier  or . 

A formula without free variables is a sentence. 

A formula is atomic if it contains no quantifiers or logical connectives . 

  

x φ x ∃x ∀x

¬, ∨

First-order logic  



Now, for every formula  and all  we define the validity 

of  in : 

φ(x1, …, xn) a1, …, an ∈ A

φ(a1, …, an) A

First-order logic  



Now, for every formula  and all  we define the validity 

of  in : 

• If  and  are formulas, then  holds 

in  if and only if at least one of  and  holds in . 

φ(x1, …, xn) a1, …, an ∈ A

φ(a1, …, an) A

φ(x1, …, xn) ψ(x1, …, xn) (φ ∨ ψ)(a1, …, an)
A φ(a1, …, an) ψ(a1, …, an) A

First-order logic  



• If  is a formula, then  holds in  if and only if 

 does not hold in . 

φ(x1, …, xn) ¬φ(a1, …, an) A

φ(a1, …, an) A

First-order logic  



• If  is a formula, then  holds in  if and only if 

 does not hold in . 

• If  is a formula, then  holds in  if and only if there 

is  such that  holds in . 

φ(x1, …, xn) ¬φ(a1, …, an) A

φ(a1, …, an) A

φ(x, x1, …, xn) ∃xφ(a1, …, an) A

a ∈ A φ(a, a1, …, an) A

First-order logic  



If  holds in , we write . 

 

φ(a1, …, an) A A ⊧ φ(a1, …, an)

First-order logic  



If  holds in , we write . 

 

Let  be a set of formulas over . 

If  holds in  with respect to every assignment, then we write  and say that 

 is a model of .

φ(a1, …, an) A A ⊧ φ(a1, …, an)

Φ τ

Φ A A ⊧ Φ
A Φ

First-order logic  



A theory over a vocabulary  is a set of sentences over .  τ τ

First-order logic  



A theory over a vocabulary  is a set of sentences over .  

Given a structure , the theory of  is the set  of all sentences  over  such 

that . 

Group theory is the theory of the class of all groups. 

τ τ

A A Th(A) φ τ

A ⊧ φ

First-order logic  



Skew braces 

Let B be a set. 



Skew braces 

Let B be a set. 

If  and  are groups(B, + ) (B, ∘ )



Skew braces 

Let B be a set. 

If  and  are groups, then the triple  is a skew (left) brace if the 

skew (left) distributive property 

(B, + ) (B, ∘ ) (B, + , ∘ )

a ∘ (b + c) = a ∘ b − a + a ∘ c
holds for all .a, b, c ∈ B



Skew braces 

Let  be a skew (left) brace. (B, + , ∘ )



Skew braces 

Let  be a skew (left) brace. (B, + , ∘ )



Skew braces 

The map           λ : a ∈ (B, ∘ ) ↦ λa ∈ Aut(B, + )

where              λa(b) = − a + a ∘ b

 is a group homomorphism. λ



Skew braces 

It is possible (and is actually very useful!) to take into account the natural 

semidirect product

G = (B, + ) ⋊ (B, ∘ )

where 

(a, b)(c, d) = (a + λb(c), b ∘ d)
for all .a, b, c, d ∈ B



Skew braces 

In analogy with ring theory, a third relevant (non-necessarily associative) operation 

in skew braces is defined as follows

a ⋆ b = λa(b) − b = − a + a ∘ b − b

for all .a, b ∈ B



Skew braces 

Taking into account , an easy computation shows that the  

-operation corresponds to a commutator of type

G = (B, + ) ⋊ (B, ∘ )
⋆

[(0, a), (b, 0)] = (a ⋆ b, 0)

for all .a, b ∈ B



Skew brace 

A left ideal of a skew brace  is a subgroup  of  such that  for all 

. 

B I (B, + ) λa(I) ⊆ I

a ∈ B

An ideal of a skew brace  is a left ideal that is normal in  and .B (B, + ) (B, ∘ )



Skew brace 

The socle of  is defined as B

Soc(B) = Ker(λ) ∩ Z(B, + )



Skew brace 

The socle of  is defined as B

Soc(B) = Ker(λ) ∩ Z(B, + )



Skew brace 

The socle of  is defined as B

Soc(B) = Ker(λ) ∩ Z(B, + )

The annihilator of  is defined as B

Ann(B) = Soc(B) ∩ Z(B, ∘ )



First-order language of skew braces 

Let  be the first-order language of skew braces.τ = { + , ∘ , −1, − ,0}

In what follows, a formula is just an -formula, that is, a formula in the language .τ τ



First-order language of skew braces 

Let  be the first-order language of skew braces.τ = { + , ∘ , −1, − ,0}

In what follows, a formula is just an -formula, that is, a formula in the language .τ τ



First-order language of skew braces 
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Let  be a skew brace.  

Then  denotes the first-order theory of .

B

Th(B) = {φ : B ⊧ φ} B



First-order language of skew braces 

Let  be the first-order language of skew braces.τ = { + , ∘ , −1, − ,0}

In what follows, a formula is just an -formula, that is, a formula in the language .τ τ

Let  be a skew brace.  

Then  denotes the first-order theory of .

B

Th(B) = {φ : B ⊧ φ} B



First-order language of skew braces 

A subset  of  is definable if  for some formula .X B X = {b ∈ B : B ⊧ φ(b)} φ(x)



First-order language of skew braces 

A subset  of  is definable if  for some formula .X B X = {b ∈ B : B ⊧ φ(b)} φ(x)

 is parametrically definable if   

for some formula  and some , 

(in this case,  is also called -definable).

X X = {b ∈ B : B ⊧ φ(b, a1, …, an)}
φ(x, y1, …, yn) a1, …, an ∈ B

X n



-categorical ω

A skew brace B is -categorical if every countable skew brace which has the same 

first-order theory as B is isomorphic to B. 

ω



-categorical ω

A well-known theorem of Engeler, Ryll–Nardzewski and Svenonius states that  is  

-categorical if and only if, for every ,  has only finitely many -types.

B

ω n ∈ ω Th(B) n



Fix a vocabulary .   τ

Types of elements



Fix a vocabulary .   τ

Let  be -structure.   M τ

Types of elements



Fix a vocabulary .   τ

Let  be -structure.   M τ

Let  and let .n ∈ ℕ a = (a1, …, an) ∈ Mn

Types of elements



Types of elements

Fix a vocabulary .   τ

Let  be -structure.   M τ

Let  and let .n ∈ ℕ a = (a1, …, an) ∈ Mn

The types of  in  is  a M

tpM(a) = {φ(x) : M ⊧ φ(a)}



Types 

Let  be -structure and let  be distinct variables. M τ x = (x1, …, xn)
A  -types  of  is a set of formulas over ,  that is 

finitely realized in .  

n p(x) M τ p(x) = {φi(x) : i ∈ I}
M



Types 

Let  be -structure and let  be distinct variables. M τ x = (x1, …, xn)
A  -types  of  is a set of formulas over ,  that is 

finitely realized in .  

n p(x) M τ p(x) = {φi(x) : i ∈ I}
M

This means that, for every finite subset  of , there exists an 

element  such that .

φ1(x), …, φk(x) p(x)
a = (a1, …, an) ∈ M M ⊧ ⋀

i≤k
φi(a)



If there is  in  such that  for all formulas in , we will say 

that the types  is realized in  by  and we will write .

a M M ⊧ φ(a) φ(x) ∈ p(x)
p(a) M a M ⊧ p(a)

Types 



Types 

A type  is completed, if given any formula , among the logic implications of 

, there is  or .

p(x) φ(x)
p(x) φ(x) ¬φ(x)



-categorical ω

A well-known theorem of Engeler, Ryll–Nardzewski and Svenonius states that  is  

-categorical if and only if, for every ,  has only finitely many -types.

B

ω n ∈ ω Th(B) n



-categorical  ω



-categorical  ω



m-stable, stable, unstable

Let  be a an infinite cardinal. m



Let  be a an infinite cardinal. m

The skew brace  is -stable if and only if, for every subset  of  of cardinality , 

the set of complete types over  has cardinality .  

B m A B m

A m

m-stable, stable, unstable



Let  be a an infinite cardinal. m

The skew brace  is stable if it is -stable for some infinite cardinal . B m′ m′ 

m-stable, stable, unstable



A theory that is not stable is unstable. 

m-stable, stable, unstable



It turns out that an ω-stable skew brace is m-stable for every infinite cardinal m. 

Some results 



Some results 

If  is an ω-categorical skew brace, then  and  have finite exponent.  B (B, + ) (B, ∘ )



Some results 

If  is an ω-categorical skew brace, then  and  have finite exponent.  B (B, + ) (B, ∘ )

In particular  has finite exponent.  (B, + ) ⋊λ (B, ∘ )



Some results 

Let  be a countably infinite -categorical skew brace. B ω

Then a subset of  is definable if and only if it is invariant under all automorphisms 

of .  

B

B



Some results 

Let  be a skew brace, ,  and . B N = (B, + ) X = (B, ∘ ) G = N ⋊λ X

If  is -categorical (resp. stable), we easily see that  is ω-categorical (resp. 

stable) because the function  is defined in terms of  and .

B ω G

λ + ∘

Moreover, it is also clear that both  and  are ω-categorical (resp. stable).N X



Some results 

If  is -categorical (resp. stable), then also  is -categorical (resp. stable) for 

any definable ideal  of .

B ω B/I ω

I B

If  is -categorical (resp. stable), then also every definable sub-skew brace of  is 

-categorical (resp. stable).

B ω B

ω



Structural results

The aim of this section is to describe the abstract structure of an arbitrary  

ω-categorical stable skew brace. 



Structural results

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be a -categorical skew brace and let  be a formula.B ω ϕ(x0, x1, …, xn)
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Let  be a -categorical skew brace and let  be a formula.B ω ϕ(x0, x1, …, xn)

Then there are formulas  and  such that the 

following properties hold. 

ϕ*(x0, x1, …, xn) ϕ**(x0, x1, …, xn)



Structural results

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be a -categorical skew brace and let  be a formula.B ω ϕ(x0, x1, …, xn)

Then there are formulas  and  such that the 

following properties hold. 

 

Let  and put .

ϕ*(x0, x1, …, xn) ϕ**(x0, x1, …, xn)

b1, …, bn T = {b ∈ B : B ⊧ ϕ(b, b1, …, bn)}



Structural results

Theorem (M.F., M. Trombetti, F. Wagner) 

 

(1) If  is the sub-skew brace generated by , then 

.

C T

C = {b ∈ B : B ⊧ ϕ*(b, b1, …, bn)}

Moreover, if  has finite order , then  is finite of order  depending only on .T n C f(n) n



Structural results

Theorem (M.F., M. Trombetti, F. Wagner) 

(2) If  is the ideal generated by , then .I T C = {b ∈ B : B ⊧ ϕ**(b, b1, …, bn)}



Structural results

Corollary (M.F., M. Trombetti, F. Wagner) 

Let  be an -categorical skew brace. Then  is definable.B ω B ⋆ B



A skew brace  is locally-finite if every finitely generated sub-skew brace is finite.B

Some results 



A skew brace  is locally-finite if every finitely generated sub-skew brace is finite.B

Moreover,  is uniformly-locally-finite if there is a function  such that the 

sub-skew brace generated by  elements has order at most .

B f : ω → ω

n f(n)

Some results 



Structural results

Corollary (M.F., M. Trombetti, F. Wagner) 

Let  be an -categorical skew brace. Then  is uniformly-locally-finite.B ω B



A first observation comes from the skew theoretic analog of a group with finitely 

many conjugates (FC-groups): these skew braces have been introduced and studied 

in  

 

I. Colazzo – M. F. – M. Trombetti:  

On derived-indecomposable solutions of the Yang-Baxter equation

Applications



FC-groups 



Applications 

A skew brace  is said to have the property  if, for each , there are finitely 

many elements of the form  with . 

B (S) b ∈ B

b ⋆ c, c ⋆ b, [b, c]∘, [b, c]+ c ∈ B

A skew brace  is said to have the property  if there is , such that, for 

every , there are at most  elements of the form   

with . 

B (BS) n ∈ ω

b ∈ B n b ⋆ c, c ⋆ b, [b, c]∘, [b, c]+

c ∈ B



Applications 

Theorem (I.Colazzo, M.F., M. Trombetti) 

A skew brace has the property  if and only if  and  are finite.  (BS) B ⋆ B [B, B]+



Applications 

Theorem (I.Colazzo, M.F., M. Trombetti) 

A skew brace has the property  if and only if  and  are finite.  (BS) B ⋆ B [B, B]+

The following is an immediate consequence of the Engeler-Ryll-Nardzewski-Svenonius 

theorem.



Applications 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be an -categorical skew brace. The following are equivalent:B ω

(1)  has property  

(2)  has property 

B (S)
B (BS)



Applications 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be an -categorical skew brace. The following are equivalent:B ω

(1)  has property  

(2)  has property 

B (S)
B (BS)



Annihilator-nilpotency 

The first nilpotency concept we deal with is annihilator-nilpotency.  

Let  be a skew brace.B

We define the upper annihilator series of  as followsB

Put ; for any ordinal , let .Ann0(B) = {0} α Annα+1(B)/Annα(B) = Ann(B/Annα(B))



Annihilator-nilpotency 

If  is a limit ordinal, let . ν Annν(B) = ⋃
α<ν

Annα(B)

The smallest ordinal number  such that  is the 

annihilator-length of .

a(B) Anna(B)(B) = Anna(B)+1(B)
B

The last term of the upper annihilator series is the hyper-annihilator of  and is  

denoted by .

B

Ann(B)



Annihilator-nilpotency 

If  for some , we say that  is annihilator-nilpotent.  B = Annn(B) n ∈ ω B

If  we say that  is annihilator-hypercentral.  B = Ann(B) B



Annihilator-nilpotency 

If  for some , we say that  is annihilator-nilpotent.  B = Annn(B) n ∈ ω B

If  we say that  is annihilator-hypercentral.  B = Ann(B) B

Moreover,  is locally-annihilator-nilpotent if every finitely generated sub-skew brace 

of  is annihilator-nilpotent.  

B

B



Nilpotency 

The aim of this section is to show that most of time these nilpotency concepts 

coincide for categorical/stable skew braces.  



Applications 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be an -categorical, stable skew brace. The following statements are 

equivalent:

B ω

(1)  is locally-annihilator-nilpotent 

(2)  is annihilator-nilpotent

B

B



Applications 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be an -categorical, stable skew brace. The following statements are 

equivalent:

B ω

(1)  is locally-annihilator-nilpotent 

(2)  is annihilator-nilpotent

B

B



Right nilpotency 

Let  be a skew brace and let ,  subsets of . B S T B

Put  and R0(S, T) = S

 Rn(S, T) = Rn−1(S, T) ⋆ T

for .n > 0

Thus  is recursively defined for every non-negative integer .Rm(S, T) m



Right nilpotency 

 is right nilpotent if and only if there is some integer  such that .B c Rc(B, B) = {0}

Right nilpotency was introduced by Rump for braces.



Right nilpotency 

 is right nilpotent if and only if there is some integer  such that .B c Rc(B, B) = {0}

Right nilpotency was introduced by Rump for braces.

W. Rump 

“Braces, radical rings, and the quantum Yang-Baxter equation” 

J. Algebra 307 (2007), 153-170.



Right nilpotency 

F. Cedò, A. Smoktunowicz, L. Vendramin 

“Skew left braces of nilpotent type” 

Proc. London Math. Soc. (6) 118 (2019), 1367-1392.

A. Smoktunowicz, L. Vendramin 

“On skew braces (with an appendix by N. Byott and L. Vendramin)” 

J. Comb. Algebra 2 (2018), no. 1, 47-86.



Right nilpotency 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be a -categorical, stable skew brace of nilpotent type. Then the following 

statements are equivalent:

B ω

(1)  is right nilpotent 

(2)  is locally-right nilpotent 

(3)  has a finite s-series 

(4)  for some 

B

B

B

B = Socn(B) n ∈ ω



Right nilpotency 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be a -categorical, stable skew brace of nilpotent type. Then the following 

statements are equivalent:

B ω

(1)  is right nilpotent 

(2)  is locally-right nilpotent 

(3)  has a finite s-series 

(4)  for some 

B

B

B

B = Socn(B) n ∈ ω



Left nilpotency 

Let  be a skew brace and let ,  be subsets of . B X Y B

Put  and L0(X, Y) = Y

 Ln(X, Y) = X ⋆ Ln−1(X, Y)

for .n > 0

Thus  is recursively defined for every non-negative integer .Lm(X, Y) m



Left nilpotency 

 is left nilpotent if and only if there is some integer  such that .B c Lc(B, B) = {0}

mariaferrara
Evidenziato



Left nilpotency 

For a finite skew brace  of nilpotent type, being left nilpotent is equivalent to  

being nilpotent.

B (B, ∘ )

Here, we extend this result to -categorical, stable skew brace. ω

F. Cedò, A. Smoktunowicz, L. Vendramin 

“Skew left braces of nilpotent type” 

Proc. London Math. Soc. (6) 118 (2019), 1367-1392.



Left nilpotency 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be a -categorical, stable skew brace of nilpotent type.  

If  is any sub-skew brace of , the following statements are equivalent:

B ω

C B

(1)  is left nilpotent 

(2)  is nilpotent 

C

(C, ∘ )



Left nil

A skew brace  is left nil if for every  there is  such that B b ∈ B n ∈ ω

 b ⋆ (b ⋆ (… ⋆ b)…))
n times

= 0



Left nil 

Smoktunowicz proved that if  is finite and  is abelian, then  is left nil if 

and only if it is left nilpotent.

B (B, + ) B

A. Smoktunowicz 

“A note on set-theoretic solutions of the Yang-Baxter equation” 

J. Algebra 500 (2018), 3-18.



Left nilpotency 

Theorem (M.F., M. Trombetti, F. Wagner) 

Let  be a -categorical, stable brace. If  is any sub-skew brace of , the following 

statements are equivalent:

B ω C B

(1)  is left nil 

(2)  is left nilpotent 

C

C



Thank you for listening! 


