Stability and ω-Categoricity of Skew Braces

Maria Ferrara

maria.ferrara1@unicampania.it

Università degli Studi della Campania "Luigi Vanvitelli"

Groups, Rings and the Yang-Baxter equation 2023
June 19-23, 2023

Stability and ω-Categoricity of Skew Braces

Stability and ω-Categoricity of Skew Braces

M.F.

Stability and ω-Categoricity of Skew Braces

M.F.

Marco Trombetti
Università degli Studi di Napoli Federico Il, Italy

Stability and ω-Categoricity of Skew Braces

M.F.

> Marco Trombetti

Università degli Studi di Napoli Federico Il, Italy

Stability and ω-Categoricity of Skew Braces

M.F.

Marco Trombetti
Università degli Studi di Napoli Federico Il, Italy

Frank O. Wagner, Université de Lyon, France

Timeline

Timeline

Timeline

What does a skew brace look like from the first-order logic point of view?

September 2022
October 2022

On derived-indecomposable solutions
of the Yang--Baxter equation
(1. Colazzo, M.F., M. Trombetti)

Timeline

What does a skew brace look like from the first-order logic point of view?

Timeline

What does a skew brace look like from the first-order logic point of view?

First-order logic

A vocabulary (or alphabet) τ is a set consisting of relation symbols, function symbols and constant symbols.

First-order logic

A vocabulary τ is a set consisting of relation symbols, function symbols and constant symbols.

For example, in a group we use the vocabulary $\tau=\{\cdot, e,-1\}$.

First-order logic

Now, fix a vocabulary τ.
A structure A for τ (a τ-structure) is a non-empty set A together with

- relations $R^{A} \subseteq A^{n}$ for every n-ary relation symbol $R \in \tau$,
- functions $f^{A}: A^{m} \rightarrow A$ for every m-ary function symbol $f \in \tau$,
- constants $c^{A} \in A$ for every constant symbol $c \in \tau$.

Example

If we use the vocabulary $\tau=\{\cdot, e,-1\}$, we can say that a group is a τ-structure G satisfying the following sentences:

- (Gı) $\forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))$
- (G2) $\forall x(e \cdot x=x \wedge x \cdot e=x)$
- (G3) $\forall x\left(x \cdot x^{-1}=e \wedge x^{-1} \cdot x=e\right)$

Example

If we use the vocabulary $\tau=\{\cdot, e,-1\}$, we can say that a group is a τ-structure G satisfying the following sentences:

- (G1) $\forall x \forall y \forall z((x \cdot y) \cdot z=x \cdot(y \cdot z))$
- (G2) $\forall x(e \cdot x=x \wedge x \cdot e=x)$
- (G3) $\forall x\left(x \cdot x^{-1}=e \wedge x^{-1} \cdot x=e\right)$

Example

An ordered ring R is a structure on the vocabulary $\tau=\{0,1,+, \cdot,<\}$, where

- 0,1 are constants,
- +, are functions,
- < is a relation,
and they are interpreted in accordance with the axioms of the ordered rings.

First-order logic

Before defining formulas, let us define terms.

A term over τ is a finite sequence of characters that can be obtained by finitely many applications of the following rules:

First-order logic

(T_{1}) All constant symbols in τ and all variables are terms.
(T_{2}) If t_{1}, \ldots, t_{n} are terms and $f \in \tau$ is an n-ary function symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

First-order logic

A first-order formula over τ is a finite sequence of characters that can be obtained by finitely many applications of the following rules:

First-order logic
(F1) If t_{1} and t_{2} are terms over τ, then $\left(t_{1}=t_{2}\right)$ is a formula.
(F2) If $R \in \tau$ is an n-ary relation symbol and if t_{1}, \ldots, t_{n} are terms over τ, then $R\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
(F3) If φ is a formula, then so is $\neg \varphi$.
(F4) If φ and ψ are formulas, then $(\varphi \vee \psi)$ is a formula.
(F5) If φ is a formula and x is a variable, then $\exists x \varphi$ is a formula.

First-order logic

If φ and ψ are formulas, we use
($\varphi \wedge \psi$) as abreviations for $\neg(\neg \varphi \vee \neg \psi)$,
($\varphi \rightarrow \psi$) as abreviations for $(\neg \varphi \vee \psi)$,
$(\varphi \leftrightarrow \psi)$ as abreviations for $\neg(\neg(\neg(\varphi \vee \psi) \vee \neg(\varphi \vee \neg \psi))$,
$\forall x \varphi$ as abreviations for $\neg \exists x \neg \varphi$.

First-order logic

A variable x occurs freely in φ if x occurs outside the scope of a quantifier $\exists x$ or $\forall x$.

Example: $\forall y(y=0) \rightarrow(x=0)$

First-order logic

A variable x occurs freely in φ if x occurs outside the scope of a quantifier $\exists x$ or $\forall x$. A formula without free variables is a sentence.

First-order logic

A variable x occurs freely in φ if x occurs outside the scope of a quantifier $\exists x$ or $\forall x$. A formula without free variables is a sentence.

A formula is atomic if it contains no quantifiers or logical connectives \neg, V.

First-order logic
NaTe: The terms and the formulas haven't meaning if the don't specify a siruciure in which interposer them.

$$
v:\left\{x_{1}, \ldots, x_{n}\right\} \longmapsto v\left(x_{i}\right)=a i \in A
$$

Now, for every formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and all $a_{1}, \ldots, a_{n} \in A$ we define the validity of $\varphi\left(a_{1}, \ldots, a_{n}\right)$ in A :

First-order logic

Now, for every formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and all $a_{1}, \ldots, a_{n} \in A$ we define the validity of $\varphi\left(a_{1}, \ldots, a_{n}\right)$ in A :

- If $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $\psi\left(x_{1}, \ldots, x_{n}\right)$ are formulas, then $(\varphi \vee \psi)\left(a_{1}, \ldots, a_{n}\right)$ holds in A if and only if at least one of $\varphi\left(a_{1}, \ldots, a_{n}\right)$ and $\psi\left(a_{1}, \ldots, a_{n}\right)$ holds in A.

First-order logic

- If $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a formula, then $\neg \varphi\left(a_{1}, \ldots, a_{n}\right)$ holds in A if and only if $\varphi\left(a_{1}, \ldots, a_{n}\right)$ does not hold in A.

First-order logic

- If $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a formula, then $\neg \varphi\left(a_{1}, \ldots, a_{n}\right)$ holds in A if and only if $\varphi\left(a_{1}, \ldots, a_{n}\right)$ does not hold in A.
- If $\varphi\left(x, x_{1}, \ldots, x_{n}\right)$ is a formula, then $\exists x \varphi\left(a_{1}, \ldots, a_{n}\right)$ holds in A if and only if there is $a \in A$ such that $\varphi\left(a, a_{1}, \ldots, a_{n}\right)$ holds in A.

First-order logic

If $\varphi\left(a_{1}, \ldots, a_{n}\right)$ holds in A, we write $A \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$.

First-order logic

If $\varphi\left(a_{1}, \ldots, a_{n}\right)$ holds in A, we write $A \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$.

Let Φ be a set of formulas over τ.
If Φ holds in A with respect to every assignment, then we write $A \vDash \Phi$ and say that A is a model of Φ.

First-order logic

A theory over a vocabulary τ is a set of sentences over τ.

First-order logic

A theory over a vocabulary τ is a set of sentences over τ.

Given a structure A, the theory of A is the set $\operatorname{Th}(A)$ of all sentences φ over τ such that $A \vDash \varphi$.

Group theory is the theory of the class of all groups.

Skew braces

Let B be a set.

Skew braces

Let B be a set.

If $(B,+)$ and (B, \circ) are groups

Skew braces

Let B be a set.

If $(B,+)$ and (B, \circ) are groups, then the triple $(B,+, \circ)$ is a skew (left) brace if the skew (left) distributive property

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds for all $a, b, c \in B$.

Skew braces

Let $(B,+, \circ)$ be a skew (left) brace.

Skew braces

Let $(B,+, \circ)$ be a skew (left) brace.
Recall that in a $\operatorname{grap}\left(G_{\cdot}\right),[x, y]=x y x^{-1} y^{-1}$
$[a, b]_{+}$and $[a, b]_{0}$ wien denote respectively the commutator in $(B,+)$ and $(B, 0)$ of a and b.

Skew braces

The map $\quad \lambda: a \in(B, \circ) \mapsto \lambda_{a} \in \operatorname{Aut}(B,+)$
where

$$
\lambda_{a}(b)=-a+a \circ b
$$

λ is a group homomorphism.

Skew braces

It is possible (and is actually very useful!) to take into account the natural semidirect product

$$
G=(B,+) \rtimes(B, \circ)
$$

where

$$
(a, b)(c, d)=\left(a+\lambda_{b}(c), b \circ d\right)
$$

for all $a, b, c, d \in B$.

Skew braces

In analogy with ring theory, a third relevant (non-necessarily associative) operation in skew braces is defined as follows

$$
a \star b=\lambda_{a}(b)-b=-a+a \circ b-b
$$

for all $a, b \in B$.

Skew braces

Taking into account $G=(B,+) \rtimes(B, \circ)$, an easy computation shows that the \star-operation corresponds to a commutator of type

$$
[(0, a),(b, 0)]=(a \star b, 0)
$$

for all $a, b \in B$.

Skew brace

A left ideal of a skew brace B is a subgroup I of $(B,+)$ such that $\lambda_{a}(I) \subseteq I$ for all $a \in B$.

An ideal of a skew brace B is a left ideal that is normal in $(B,+)$ and (B, \circ).

Skew brace

The socle of B is defined as

$$
\operatorname{Soc}(B)=\operatorname{Ker}(\lambda) \cap Z(B,+)
$$

Skew brace

The socle of B is defined as

$$
\operatorname{Soc}(B)=\operatorname{Ker}(\lambda) \cap Z(B,+)
$$

where $Z\left(B_{1}+\right)$ is the center of $(B,+)$

Skew brace

The socle of B is defined as

$$
\operatorname{Soc}(B)=\operatorname{Ker}(\lambda) \cap Z(B,+)
$$

The annihilator of B is defined as

$$
\begin{aligned}
& \text { is the center } \\
& \operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)
\end{aligned}
$$

First-order language of skew braces

Let $\tau=\{+, \circ,-1,-, 0\}$ be the first-order language of skew braces.
In what follows, a formula is just an τ-formula, that is, a formula in the language τ.

First-order language of skew braces

Let $\tau=\{+, \circ,-1,-, 0\}$ be the first-order language of skew braces.
In what follows, a formula is just an τ-formula, that is, a formula in the language τ.

First-order language of skew braces

Let $\tau=\{+, \circ,-1,-, 0\}$ be the first-order language of skew braces.
In what follows, a formula is just an τ-formula, that is, a formula in the language τ.

Let B be a skew brace.
Then $\operatorname{Th}(B)=\{\varphi: B \vDash \varphi\}$ denotes the first-order theory of B.

First-order language of skew braces

Let $\tau=\{+, \circ,-1,-, 0\}$ be the first-order language of skew braces.

In what follows, a formula is just an τ-formula, that is, a formula in the language τ.

Let B be a skew brace.
Then $\operatorname{Th}(B)=\{\varphi: B \vDash \varphi\}$ denotes the first-order theory of B.
Hence, Th (B) is the set of ale sentences Mover τ such that $B=\varphi$.

First-order language of skew braces

A subset X of B is definable if $X=\{b \in B: B \vDash \varphi(b)\}$ for some formula $\varphi(x)$.

First-order language of skew braces

A subset X of B is definable if $X=\{b \in B: B \vDash \varphi(b)\}$ for some formula $\varphi(x)$.
X is parametrically definable if $X=\left\{b \in B: B \vDash \varphi\left(b, a_{1}, \ldots, a_{n}\right)\right\}$ for some formula $\varphi\left(x, y_{1}, \ldots, y_{n}\right)$ and some $a_{1}, \ldots, a_{n} \in B$, (in this case, X is also called n-definable).

ω-categorical

A skew brace B is ω-categorical if every countable skew brace which has the same first-order theory as B is isomorphic to B.

ω-categorical

A well-known theorem of Engeler, Ryll-Nardzewski and Svenonius states that B is ω-categorical if and only if, for every $n \in \omega, T h(B)$ has only finitely many n-types.

Types of elements

Fix a vocabulary τ.

Types of elements

Fix a vocabulary τ.
Let M be τ-structure.

Types of elements

Fix a vocabulary τ.
Let M be τ-structure.
Let $n \in \mathbb{N}$ and let $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$.

Types of elements

Fix a vocabulary τ.

Let M be τ-structure.
Let $n \in \mathbb{N}$ and let $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$.
The types of \bar{a} in M is

$$
\begin{aligned}
& \qquad t_{M}(\bar{a})=\{\varphi(\bar{x}): M \vDash \varphi(\bar{a})\} \\
& \text { So, this is the set of all formulas } \varphi(\bar{x}) \text { ruch that } M \neq \varphi(\bar{a})
\end{aligned}
$$

Types

Let M be τ-structure and let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ be distinct variables.
A n-types $p(\bar{x})$ of M is a set of formulas over $\tau, p(\bar{x})=\left\{\varphi_{i}(\bar{x}): i \in I\right\}$ that is finitely realized in M.

Types

Let M be τ-structure and let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ be distinct variables.
A n-types $p(\bar{x})$ of M is a set of formulas over $\tau, p(\bar{x})=\left\{\varphi_{i}(\bar{x}): i \in I\right\}$ that is finitely realized in M.

This means that, for every finite subset $\varphi_{1}(\bar{x}), \ldots, \varphi_{k}(\bar{x})$ of $p(\bar{x})$, there exists an element $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in M$ such that $M \vDash \bigwedge_{i \leq k} \varphi_{i}(\bar{a})$.

Types

If there is \bar{a} in M such that $M \vDash \varphi(\bar{a})$ for all formulas in $\varphi(\bar{x}) \in p(\bar{x})$, we will say that the types $p(\bar{a})$ is realized in M by \bar{a} and we will write $M \vDash p(\bar{a})$.

Types

A type $p(\bar{x})$ is completed, if given any formula $\varphi(\bar{x})$, among the logic implications of $p(\bar{x})$, there is $\varphi(\bar{x})$ or $\neg \varphi(\bar{x})$.

ω-categorical

A well-known theorem of Engeler, Ryll-Nardzewski and Svenonius states that B is ω-categorical if and only if, for every $n \in \omega, T h(B)$ has only finitely many n-types.

ω-categorical

Theorem 2.3.13 (Characterization of ω-Categorical Theories). Let T be a complete theory. Then the following are equivalent:
(a). T is ω-categorical.
(d). For each $n<\omega$, T has only finitely many types in x_{1}, \ldots, x_{n}.

Proof. The reader is advised to sit down before beginning this proof. We shall prove the equivalence of (a) and (d) by proving a chain of implications

$$
(\text { a }) \rightarrow(b) \rightarrow(c) \rightarrow(d) \rightarrow(e) \rightarrow(f) \rightarrow(a) .
$$

Each of the six equivalent conditions is interesting in its own right.

```
MODEL THEORY
    C.C. CHANG

\section*{\(\omega\)-categorical}

Theorem 2.3.13 (Characterization of \(\omega\)-Categorical Theories). Let \(T\) be a complete theory. Then the following are equivalent:
(a). \(T\) is \(\omega\)-categorical.
(d). For each \(n<\omega, T\) has only finitely many types in \(x_{1}, \ldots, x_{n}\).

Proof. The reader is advised to sit down before beginning this proof. We shall prove the equivalence of (a) and (d) by proving a chain of implications
\[
(\text { a) } \rightarrow(\text { b }) \rightarrow(c) \rightarrow(d) \rightarrow(e) \rightarrow(f) \rightarrow(a) .
\]

Each of the six equivalent conditions is interesting in its own right.

\section*{m-stable, stable, unstable}

Let \(m\) be a an infinite cardinal.

\section*{m-stable, stable, unstable}

Let \(m\) be a an infinite cardinal.

The skew brace \(B\) is \(m\)-stable if and only if, for every subset \(A\) of \(B\) of cardinality \(m\), the set of complete types over \(A\) has cardinality \(m\).

\section*{m-stable, stable, unstable}

Let \(m\) be a an infinite cardinal.

The skew brace \(B\) is stable if it is \(m^{\prime}\)-stable for some infinite cardinal \(m^{\prime}\).

\section*{m-stable, stable, unstable}

A theory that is not stable is unstable.

\section*{Some results}

It turns out that an \(\omega\)-stable skew brace is \(m\)-stable for every infinite cardinal \(m\).

Some results

If \(B\) is an \(\omega\)-categorical skew brace, then \((B,+)\) and \((B, \circ)\) have finite exponent.

The exponent of a group is the least natural number \(n\) much that \(g^{n}=1\), for ale \(g \in G\).

\section*{Some results}

If \(B\) is an \(\omega\)-categorical skew brace, then \((B,+)\) and \((B, \circ)\) have finite exponent.

In particular \((B,+) \rtimes_{\lambda}(B, \circ)\) has finite exponent.

\section*{Some results}

Let \(B\) be a countably infinite \(\omega\)-categorical skew brace.
Then a subset of \(B\) is definable if and only if it is invariant under all automorphisms of \(B\).

\section*{Some results}

Let \(B\) be a skew brace, \(N=(B,+), X=(B, \circ)\) and \(G=N \rtimes_{\lambda} X\).

If \(B\) is \(\omega\)-categorical (resp. stable), we easily see that \(G\) is \(\omega\)-categorical (resp. stable) because the function \(\lambda\) is defined in terms of + and 0 .

Moreover, it is also clear that both \(N\) and \(X\) are \(\omega\)-categorical (resp. stable).

\section*{Some results}

If \(B\) is \(\omega\)-categorical (resp. stable), then also \(B / I\) is \(\omega\)-categorical (resp. stable) for any definable ideal \(I\) of \(B\).

If \(B\) is \(\omega\)-categorical (resp. stable), then also every definable sub-skew brace of \(B\) is \(\omega\)-categorical (resp. stable).

\section*{Structural results}

The aim of this section is to describe the abstract structure of an arbitrary \(\omega\)-categorical stable skew brace.

\section*{Structural results}

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be a \(\omega\)-categorical skew brace and let \(\phi\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) be a formula.

\section*{Structural results}

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be a \(\omega\)-categorical skew brace and let \(\phi\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) be a formula.

Then there are formulas \(\phi^{*}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) and \(\phi^{* *}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) such that the following properties hold.

\section*{Structural results}

\section*{Theorem (M.F., M. Trombetti, F. Wagner)}

Let \(B\) be a \(\omega\)-categorical skew brace and let \(\phi\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) be a formula.

Then there are formulas \(\phi^{*}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) and \(\phi^{* *}\left(x_{0}, x_{1}, \ldots, x_{n}\right)\) such that the following properties hold.

Let \(b_{1}, \ldots, b_{n}\) and put \(T=\left\{b \in B: B \vDash \phi\left(b, b_{1}, \ldots, b_{n}\right)\right\}\).

\section*{Structural results}

Theorem (M.F., M. Trombetti, F. Wagner)
(1) If \(C\) is the sub-skew brace generated by \(T\), then
\(C=\left\{b \in B: B \vDash \phi^{*}\left(b, b_{1}, \ldots, b_{n}\right)\right\}\).

Moreover, if \(T\) has finite order \(n\), then \(C\) is finite of \(\operatorname{order} f(n)\) depending only on \(n\).

\section*{Structural results}

Theorem (M.F., M. Trombetti, F. Wagner)
(2) If \(I\) is the ideal generated by \(T\), then \(C=\left\{b \in B: B \vDash \phi^{* *}\left(b, b_{1}, \ldots, b_{n}\right)\right\}\).

\section*{Structural results}

Corollary (M.F., M. Trombetti, F. Wagner)
Let \(B\) be an \(\omega\)-categorical skew brace. Then \(B \star B\) is definable.

Some results
\(A\) skew brace \(B\) is locally-finite if every finitely generated sub-skew brace is finite.

\section*{Some results}
\(A\) skew brace \(B\) is locally-finite if every finitely generated sub-skew brace is finite.

Moreover, \(B\) is uniformly-locally-finite if there is a function \(f: \omega \rightarrow \omega\) such that the sub-skew brace generated by \(n\) elements has order at most \(f(n)\).

\section*{Structural results}

Corollary (M.F., M. Trombetti, F. Wagner)
Let \(B\) be an \(\omega\)-categorical skew brace. Then \(B\) is uniformly-locally-finite.

\section*{Applications}

A first observation comes from the skew theoretic analog of a group with finitely many conjugates (FC-groups): these skew braces have been introduced and studied in

\section*{1. Colazzo - M. F. - M. Trombetti:}

On derived-indecomposable solutions of the Yang-Baxter equation

FC-groups

An FC. group is a group in which every element has only finitely many conjugates.
\((G, \cdot)\) is a group. Let \(x, y \in G\).
\(x\) and \(y\) are conjugate if there is \(g \in G\) such that \(\operatorname{gag}^{-1}=b\)

\section*{Applications}

A skew brace \(B\) is said to have the property \((S)\) if, for each \(b \in B\), there are finitely many elements of the form \(b \star c, c \star b,[b, c]_{o},[b, c]_{+}\)with \(c \in B\).

A skew brace \(B\) is said to have the property \((B S)\) if there is \(n \in \omega\), such that, for every \(b \in B\), there are at most \(n\) elements of the form \(b \star c, c \star b,[b, c]_{o},[b, c]_{+}\) with \(c \in B\).

\section*{Applications}

Theorem (I.Colazzo, M.F., M. Trombetti)
A skew brace has the property \((B S)\) if and only if \(B \star B\) and \([B, B]_{+}\)are finite.

\section*{Applications}

Theorem (I.Colazzo, M.F., M. Trombetti)
A skew brace has the property \((B S)\) if and only if \(B \star B\) and \([B, B]_{+}\)are finite.

The following is an immediate consequence of the Engeler-Ryll-Nardzewski-Svenonius theorem.

\section*{Applications}

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be an \(\omega\)-categorical skew brace. The following are equivalent:
(1) \(B\) has property ( \(S\) )
(2) \(B\) has property \((B S)\)

\section*{Applications}

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be an \(\omega\)-categorical skew brace. The following are equivalent:
(1) \(B\) has property \((S)\)
(2) \(B\) has property \((B S)\)


\section*{Annihilator-nilpotency}

The first nilpotency concept we deal with is annihilator-nilpotency.
Let \(B\) be a skew brace.

We define the upper annihilator series of \(B\) as follows

Put \(A n n_{0}(B)=\{0\} ;\) for any ordinal \(\alpha\), let \(A n n_{\alpha+1}(B) / A n n_{\alpha}(B)=\operatorname{Ann}\left(B / A n n_{\alpha}(B)\right)\).

\section*{Annihilator-nilpotency}

If \(\nu\) is a limit ordinal, let \(A n n_{\nu}(B)=\bigcup_{\alpha<\nu} A n n_{\alpha}(B)\).

The smallest ordinal number \(a(B)\) such that \(A n n_{a(B)}(B)=A n n_{a(B)+1}(B)\) is the annihilator-length of \(B\).

The last term of the upper annihilator series is the hyper-annihilator of \(B\) and is denoted by \(\overline{A n n}(B)\).

\section*{Annihilator-nilpotency}

If \(B=\operatorname{Ann}_{n}(B)\) for some \(n \in \omega\), we say that \(B\) is annihilator-nilpotent.

If \(B=\overline{\operatorname{Ann}}(B)\) we say that \(B\) is annihilator-hypercentral.

\section*{Annihilator-nilpotency}

If \(B=\operatorname{Ann}_{n}(B)\) for some \(n \in \omega\), we say that \(B\) is annihilator-nilpotent.

If \(B=\overline{\operatorname{Ann}(B)}\) we say that \(B\) is annihilator-hypercentral.

Moreover, \(B\) is locally-annihilator-nilpotent if every finitely generated sub-skew brace of \(B\) is annihilator-nilpotent.

\section*{Nilpotency}

The aim of this section is to show that most of time these nilpotency concepts coincide for categorical/stable skew braces.

\section*{Applications}

\section*{Theorem (M.F., M. Trombetti, F. Wagner)}

Let \(B\) be an \(\omega\)-categorical, stable skew brace. The following statements are equivalent:
(1) \(B\) is locally-annihilator-nilpotent
(2) \(B\) is annihilator-nilpotent

\section*{Applications}

\section*{Theorem (M.F., M. Trombetti, F. Wagner)}

Let \(B\) be an \(\omega\)-categorical, stable skew brace. The following statements are equivalent:
(1) \(B\) is locally-annihilator-nilpotent
(2) \(B\) is annihilator-nilpotent


\section*{Right nilpotency}

Let \(B\) be a skew brace and let \(S, T\) subsets of \(B\).
Put \(R_{0}(S, T)=S\) and
\[
R_{n}(S, T)=R_{n-1}(S, T) \star T
\]
for \(n>0\).
Thus \(R_{m}(S, T)\) is recursively defined for every non-negative integer \(m\).

\section*{Right nilpotency}
\(B\) is right nilpotent if and only if there is some integer \(c\) such that \(R_{c}(B, B)=\{0\}\).

Right nilpotency was introduced by Rump for braces.

\section*{Right nilpotency}
\(B\) is right nilpotent if and only if there is some integer \(c\) such that \(R_{c}(B, B)=\{0\}\).

Right nilpotency was introduced by Rump for braces.

\section*{W. Rump}
"Braces, radical rings, and the quantum Yang-Baxter equation"
J. Algebra 307 (2007), 153-170.

\section*{Right nilpotency}
F. Cedò, A. Smoktunowicz, L. Vendramin
"Skew left braces of nilpotent type"
Proc. London Math. Soc. (6) 118 (2019), 1367-1392.

\section*{A. Smoktunowicz, L. Vendramin}
"On skew braces (with an appendix by N. Byott and L. Vendramin)"
J. Comb. Algebra 2 (2018), no. 1, 47-86.

\section*{Right nilpotency}

Theorem (M.F., M. Trombetti, F. Wagner) ( \(B,+\) ) is niepotent

7
Let \(B\) be a \(\omega\)-categorical, stable skew brace of nilpotent type. Then the following statements are equivalent:
(1) \(B\) is right nilpotent
(2) \(B\) is locally-right nilpotent
(3) \(B\) has a finite s-series
(4) \(B=\operatorname{Soc}_{n}(B)\) for some \(n \in \omega\)

Right nilpotency

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be a \(\omega\)-categorical, stable skew brace of nilpotent type. Then the following statements are equivalent:
(1) \(B\) is right nilpotent

A skew brace B is said to be
(1) \(B\) is right nilpotent bocally-right-nieptent if every
(2) \(B\) is locally-right nilpotent finitely generated sub. skew brace of \(B\) is right niepotent.
(3) \(B\) has a finite s-series
(4) \(B=\operatorname{Soc}_{n}(B)\) for some \(n \in \omega\)

\section*{Left nilpotency}

Let \(B\) be a skew brace and let \(X, Y\) be subsets of \(B\).
Put \(L_{0}(X, Y)=Y\) and
\[
L_{n}(X, Y)=X \star L_{n-1}(X, Y)
\]
for \(n>0\).
Thus \(L_{m}(X, Y)\) is recursively defined for every non-negative integer \(m\).

\section*{Left nilpotency}
\(B\) is left nilpotent if and only if there is some integer \(c\) such that \(L_{c}(B, B)=\{0\}\).

\section*{Left nilpotency}

\section*{F. Cedò, A. Smoktunowicz, L. Vendramin}
"Skew left braces of nilpotent type"
Proc. London Math. Soc. (6) 118 (2019), 1367-1392.

For a finite skew brace \(B\) of nilpotent type, being left nilpotent is equivalent to \((B, \circ)\) being nilpotent.

Here, we extend this result to \(\omega\)-categorical, stable skew brace.

\section*{Left nilpotency}

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be a \(\omega\)-categorical, stable skew brace of nilpotent type.
If \(C\) is any sub-skew brace of \(B\), the following statements are equivalent:
(1) \(C\) is left nilpotent
(2) \((C, \circ)\) is nilpotent

\section*{Left nil}
\(A\) skew brace \(B\) is left nil if for every \(b \in B\) there is \(n \in \omega\) such that
\[
b \star(b \star(\ldots \star b) \ldots))=0
\]

\section*{Left nil}

\section*{A. Smoktunowicz}
"A note on set-theoretic solutions of the Yang-Baxter equation"
J. Algebra 500 (2018), 3-18.

Smoktunowicz proved that if \(B\) is finite and \((B,+)\) is abelian, then \(B\) is left nil if and only if it is left nilpotent.

\section*{Left nilpotency}

Theorem (M.F., M. Trombetti, F. Wagner)
Let \(B\) be a \(\omega\)-categorical, stable brace. If \(C\) is any sub-skew brace of \(B\), the following statements are equivalent:
(1) \(C\) is left nil
(2) \(C\) is left nilpotent

\section*{Thank you for listening!}
```

