On the number of quaternionic and dihedral braces

Fabio Ferri

joint with Nigel Byott

20th June 2023

Braces

Braces

Definition

Let A be a set with two operation + and \circ such that $(A,+)$ is an abelian group and (A, \circ) is a group. $(A,+, \circ)$ is called (left) brace if $x \circ(y+z)=(x \circ y)-x+(x \circ z)$.

Braces

Definition

Let A be a set with two operation + and \circ such that $(A,+)$ is an abelian group and (A, \circ) is a group. $(A,+, \circ)$ is called (left) brace if $x \circ(y+z)=(x \circ y)-x+(x \circ z)$.

Why are they important?

Braces

Definition

Let A be a set with two operation + and \circ such that $(A,+)$ is an abelian group and (A, \circ) is a group. $(A,+, \circ)$ is called (left) brace if $x \circ(y+z)=(x \circ y)-x+(x \circ z)$.

Why are they important?

- They provide non-degenerate involutive solutions of the Yang-Baxter equation.

Braces

Definition

Let A be a set with two operation + and \circ such that $(A,+)$ is an abelian group and (A, \circ) is a group. $(A,+, \circ)$ is called (left) brace if $x \circ(y+z)=(x \circ y)-x+(x \circ z)$.

Why are they important?

- They provide non-degenerate involutive solutions of the Yang-Baxter equation.
- There is a (non-bijective) correspondence between braces of additive group N and multiplicative group G with the Hopf-Galois structures of type N on a Galois extension of Galois group G.

Braces

Definition

Let A be a set with two operation + and \circ such that $(A,+)$ is an abelian group and (A, \circ) is a group. $(A,+, \circ)$ is called (left) brace if $x \circ(y+z)=(x \circ y)-x+(x \circ z)$.

Why are they important?

- They provide non-degenerate involutive solutions of the Yang-Baxter equation.
- There is a (non-bijective) correspondence between braces of additive group N and multiplicative group G with the Hopf-Galois structures of type N on a Galois extension of Galois group G. Ideas from Greither/Pareigis and Byott, originally meant for Hopf-Galois structures, allow us to count and classify (skew) braces.

A conjecture by Guarnieri and Vendramin

A conjecture by Guarnieri and Vendramin

Conjecture

Let $m \geq 3$ be an integer and let $q(4 m)$ be the number of isomorphism classes of left braces with multiplicative group isomorphic to $Q_{4 m}$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } 2 \nmid m \\ 6 & \text { if } 2 \| m \\ 9 & \text { if } 4 \| m \\ 7 & \text { if } 8 \mid m\end{cases}
$$

A conjecture by Guarnieri and Vendramin

Conjecture

Let $m \geq 3$ be an integer and let $q(4 m)$ be the number of isomorphism classes of left braces with multiplicative group isomorphic to $Q_{4 m}$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } 2 \nmid m \\ 6 & \text { if } 2 \| m \\ 9 & \text { if } 4 \| m \\ 7 & \text { if } 8 \mid m\end{cases}
$$

Rump (2020) proved the conjecture when m is a power of 2 .

A conjecture by Guarnieri and Vendramin

Conjecture

Let $m \geq 3$ be an integer and let $q(4 m)$ be the number of isomorphism classes of left braces with multiplicative group isomorphic to $Q_{4 m}$. Then

$$
q(4 m)= \begin{cases}2 & \text { if } 2 \nmid m \\ 6 & \text { if } 2 \| m \\ 9 & \text { if } 4 \| m \\ 7 & \text { if } 8 \mid m\end{cases}
$$

Rump (2020) proved the conjecture when m is a power of 2 . We will prove the conjecture in full generality with explicit methods. Furthermore, we will prove the analogous result for dihedral groups.

Preliminary material pt I

Preliminary material pt I

Theorem
Let G be a finite group and let N be a finite abelian group such that $|N|=|G|$. Then the number of isomorphism classes of braces with additive group N and multiplicative group G is equal to the number of conjugacy classes of regular subgroups of $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$ isomorphic to G.

Preliminary material pt I

Theorem

Let G be a finite group and let N be a finite abelian group such that $|N|=|G|$. Then the number of isomorphism classes of braces with additive group N and multiplicative group G is equal to the number of conjugacy classes of regular subgroups of $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$ isomorphic to G.

Lemma

Let $N=\mathbb{Z} / p^{a_{1}} \mathbb{Z} \times \mathbb{Z} / p^{a_{2}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{a_{r}} \mathbb{Z}$. Then an element of $\operatorname{Hol}(N)$ can be represented as

$$
\left(\begin{array}{cc}
A & v \\
0 & 1
\end{array}\right)
$$

where A is a matrix in $\left(p^{\max \left\{0, a_{i}-a_{j}\right\}}\left(\mathbb{Z} / p^{a_{r}} \mathbb{Z}\right)\right)_{1 \leq i, j \leq n}$ whose reduction is in $\mathrm{GL}_{r}\left(\mathbb{F}_{p}\right)$ and $v \in N$. Precisely, we need to quotient by $\left(p^{a_{i}}\left(\mathbb{Z} / p^{a_{r}} \mathbb{Z}\right)\right)_{i, j}$.

Preliminary material pt II

Preliminary material pt II

$$
\begin{gathered}
n \geq 2: \\
G=Q_{2^{n} s}=\left\langle x, y: x^{2^{n-1} s}=1, y x=x^{-1} y, y^{2}=x^{2^{n-2} s}\right\rangle \\
\text { or } \\
G=D_{2^{n} s}=\left\langle x, y: x^{2^{n-1} s}=1, y x=x^{-1} y, y^{2}=1\right\rangle
\end{gathered}
$$

Preliminary material pt II

$$
\begin{gathered}
n \geq 2: \\
G=Q_{2^{n} s}=\left\langle x, y: x^{2^{n-1} s}=1, y x=x^{-1} y, y^{2}=x^{2^{n-2} s}\right\rangle \\
\text { or } \\
G=D_{2^{n} s}=\left\langle x, y: x^{2^{n-1} s}=1, y x=x^{-1} y, y^{2}=1\right\rangle
\end{gathered}
$$

Lemma

The 2-Sylow subgroups of G are quaternionic or dihedral, respectively. If G_{2} is any 2-Sylow subgroup of G, we can write $G \cong C_{s} \rtimes G_{2}$. There is only one possible subgroup of G of order s, which is normal and generated by $x^{2^{n-1}}$.

2-power case: a restriction on the possible additive groups

2-power case: a restriction on the possible additive groups

Proposition

Let $n \geq 5$. Then there is no quaternionic or dihedral left brace of type C_{2}^{n}.

2-power case: a restriction on the possible additive groups

Proposition

Let $n \geq 5$. Then there is no quaternionic or dihedral left brace of type C_{2}^{n}.
Proof.
No element of order 2^{n-1} in $\mathrm{GL}_{n+1}\left(\mathbb{F}_{2}\right)$.

2-power case: a restriction on the possible additive groups

Proposition

Let $n \geq 5$. Then there is no quaternionic or dihedral left brace of type C_{2}^{n}.
Proof.
No element of order 2^{n-1} in $\mathrm{GL}_{n+1}\left(\mathbb{F}_{2}\right)$.
Lemma
Let X be a matrix of 2-power order in $\operatorname{Mat}_{r+1}\left(\mathbb{Z} / 2^{d} \mathbb{Z}\right)$. Then
$X^{2^{t+d-1}}=I$, where $t=\left\lceil\log _{2}(r+1)\right\rceil$.

2-power case: a restriction on the possible additive groups

Proposition
Let $n \geq 5$. Then there is no quaternionic or dihedral left brace of type C_{2}^{n}.
Proof.
No element of order 2^{n-1} in $\mathrm{GL}_{n+1}\left(\mathbb{F}_{2}\right)$.
Lemma
Let X be a matrix of 2-power order in $\operatorname{Mat}_{r+1}\left(\mathbb{Z} / 2^{d} \mathbb{Z}\right)$. Then $X^{2^{t+d-1}}=I$, where $t=\left\lceil\log _{2}(r+1)\right\rceil$.

- $C_{2^{n}}$ for $n \geq 2$;
- $C_{2} \times C_{2^{n-1}}$ for $n \geq 2$;
- $C_{4} \times C_{2^{n-2}}$ for $n \geq 4$;
- $C_{2} \times C_{2} \times C_{2^{n-2}}$ for $n \geq 3$;
- $C_{2} \times C_{2} \times C_{2} \times C_{2^{n-3}}$ for $n \geq 4$.

Type $C_{2^{n}}, n \geq 4$

Type $C_{2^{n}}, n \geq 4$

$$
X=\left(\begin{array}{cc}
\alpha & v \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{cc}
\beta & w \\
0 & 1
\end{array}\right)
$$

with $\alpha, \beta \in\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$and $v, w \in \mathbb{Z} / 2^{n} \mathbb{Z}$ with the following relations: $X^{2^{n-1}}=I, X^{2^{n-2}} \neq I, Y X=X^{-1} Y$ and either $Y^{2}=X^{2^{n-2}}$ or $Y^{2}=I$.

Type $C_{2^{n}}, n \geq 4$

$$
X=\left(\begin{array}{ll}
\alpha & v \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{ll}
\beta & w \\
0 & 1
\end{array}\right)
$$

with $\alpha, \beta \in\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{\times}$and $v, w \in \mathbb{Z} / 2^{n} \mathbb{Z}$ with the following relations: $X^{2^{n-1}}=I, X^{2^{n-2}} \neq I, Y X=X^{-1} Y$ and either $Y^{2}=X^{2^{n-2}}$ or $Y^{2}=I$.
We can only have

$$
X=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{cc}
-1+2^{n-1} & 1 \\
0 & 1
\end{array}\right)
$$

or

$$
X=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right) .
$$

Type $C_{2} \times C_{2^{n-1}}, n \geq 5$

Type $C_{2} \times C_{2^{n-1}}, n \geq 5$

$$
X=\left(\begin{array}{ll}
A & v \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{cc}
B & w \\
0 & 1
\end{array}\right)
$$

with $v=\left(v_{1}, v_{2}\right)^{\top}$ such that $v_{1} \in \mathbb{Z} / 2 \mathbb{Z}$ and $v_{2} \in \mathbb{Z} / 2^{n-1} \mathbb{Z}$ (analogously for $w), A$ and B are matrices in

$$
\left(\begin{array}{cc}
1 & \mathbb{Z} / 2 \mathbb{Z} \\
2^{n-2}(\mathbb{Z} / 2 \mathbb{Z}) & \left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right)^{\times}
\end{array}\right),
$$

and which satisfy $X^{2^{n-1}}=I, X^{2^{n-2}} \neq I, Y X=X^{-1} Y$ and either $Y^{2}=X^{2^{n-2}}$ or $Y^{2}=I$.

Type $C_{2} \times C_{2^{n-1}}, n \geq 5$

$$
X=\left(\begin{array}{cc}
A & v \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{cc}
B & w \\
0 & 1
\end{array}\right)
$$

with $v=\left(v_{1}, v_{2}\right)^{\top}$ such that $v_{1} \in \mathbb{Z} / 2 \mathbb{Z}$ and $v_{2} \in \mathbb{Z} / 2^{n-1} \mathbb{Z}$ (analogously for $w), A$ and B are matrices in

$$
\left(\begin{array}{cc}
1 & \mathbb{Z} / 2 \mathbb{Z} \\
2^{n-2}(\mathbb{Z} / 2 \mathbb{Z}) & \left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right)^{\times}
\end{array}\right),
$$

and which satisfy $X^{2^{n-1}}=I, X^{2^{n-2}} \neq I, Y X=X^{-1} Y$ and either $Y^{2}=X^{2^{n-2}}$ or $Y^{2}=I$. Modulo conjugation we can assume $v_{1}=0, v_{2}=1, w_{1}=1, w_{2}=0$.

Type $C_{2} \times C_{2^{n-1}}, n \geq 5$

$$
X=\left(\begin{array}{cc}
A & v \\
0 & 1
\end{array}\right), Y=\left(\begin{array}{cc}
B & w \\
0 & 1
\end{array}\right)
$$

with $v=\left(v_{1}, v_{2}\right)^{\top}$ such that $v_{1} \in \mathbb{Z} / 2 \mathbb{Z}$ and $v_{2} \in \mathbb{Z} / 2^{n-1} \mathbb{Z}$ (analogously for $w), A$ and B are matrices in

$$
\left(\begin{array}{cc}
1 & \mathbb{Z} / 2 \mathbb{Z} \\
2^{n-2}(\mathbb{Z} / 2 \mathbb{Z}) & \left(\mathbb{Z} / 2^{n-1} \mathbb{Z}\right)^{\times}
\end{array}\right),
$$

and which satisfy $X^{2^{n-1}}=I, X^{2^{n-2}} \neq I, Y X=X^{-1} Y$ and either $Y^{2}=X^{2^{n-2}}$ or $Y^{2}=I$. Modulo conjugation we can assume $v_{1}=0, v_{2}=1, w_{1}=1, w_{2}=0$. We find eight subgroups in each case, which will lie in six conjugacy classes.

On the non-2-power case

On the non-2-power case

$G \cong C_{s} \rtimes G_{2}$ is quaternionic or dihedral. $N \cong N_{s} \times N_{2}$ is abelian. We are looking for regular embeddings $G \rightarrow \operatorname{Hol}(N) \cong \operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)$.

On the non-2-power case

$G \cong C_{s} \rtimes G_{2}$ is quaternionic or dihedral. $N \cong N_{s} \times N_{2}$ is abelian. We are looking for regular embeddings $G \rightarrow \operatorname{Hol}(N) \cong \operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)$. The map $G \rightarrow \operatorname{Hol}\left(N_{2}\right)$ is trivial on C_{s}. This and Schur-Zassenhaus tell us that the brace structure on N is a semidirect product of N_{s} and N_{2}.

On the non-2-power case

$G \cong C_{s} \rtimes G_{2}$ is quaternionic or dihedral. $N \cong N_{s} \times N_{2}$ is abelian. We are looking for regular embeddings $G \rightarrow \operatorname{Hol}(N) \cong \operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)$. The map $G \rightarrow \operatorname{Hol}\left(N_{2}\right)$ is trivial on C_{s}. This and Schur-Zassenhaus tell us that the brace structure on N is a semidirect product of N_{s} and N_{2}. By a result of Kohl (1998), N_{s} is cyclic. Then the map $G \rightarrow \operatorname{Aut}\left(N_{s}\right)$ is trivial on C_{s} (N_{s} is a trivial brace). The following result refines Crespo, Gil-Muñoz, Rio, Vela (2022).

On the non-2-power case

$G \cong C_{s} \rtimes G_{2}$ is quaternionic or dihedral. $N \cong N_{s} \times N_{2}$ is abelian. We are looking for regular embeddings $G \rightarrow \operatorname{Hol}(N) \cong \operatorname{Hol}\left(N_{s}\right) \times \operatorname{Hol}\left(N_{2}\right)$.
The map $G \rightarrow \operatorname{Hol}\left(N_{2}\right)$ is trivial on C_{s}. This and Schur-Zassenhaus tell us that the brace structure on N is a semidirect product of N_{s} and N_{2}. By a result of Kohl (1998), N_{s} is cyclic. Then the map $G \rightarrow \operatorname{Aut}\left(N_{s}\right)$ is trivial on C_{s} (N_{s} is a trivial brace). The following result refines Crespo, Gil-Muñoz, Rio, Vela (2022).

Theorem

Let Q be a quaternionic or dihedral group of order $2^{n} s$. Then the number of conjugacy classes of regular subgroups G of $\operatorname{Hol}(N)$ isomorphic to Q is equal to the number of classes $\left(G_{2}, \tau\right)$, where G_{2} runs over the regular subgroups of $\operatorname{Hol}\left(N_{2}\right)$ isomorphic to Q_{2}, and τ runs over $\tau: G_{2} \rightarrow \operatorname{Aut}\left(N_{s}\right)$ such that $N_{s} \rtimes_{\tau} G_{2} \cong Q$ modulo: $\left(G_{2}, \tau\right)$ is equivalent to $\left(G_{2}^{\prime}, \tau^{\prime}\right)$ if $\tau(\cdot)=\tau^{\prime}\left(g \cdot g^{-1}\right)$ for $g \in \operatorname{Aut}\left(N_{2}\right) \subseteq \operatorname{Hol}\left(N_{2}\right)$.

The final result

The final result

In most cases (quaternionic with $3 \neq n \geq 2$ or dihedral with $n \geq 3$), there is only one such τ modulo conjugate. Otherwise, we only have to look at Q_{24} and D_{12}.

The final result

In most cases (quaternionic with $3 \neq n \geq 2$ or dihedral with $n \geq 3$), there is only one such τ modulo conjugate. Otherwise, we only have to look at Q_{24} and D_{12}.

Theorem
Let $m \geq 3$ be an integer, let $q(4 m)$ be the number of isomorphism classes of left braces with multiplicative group isomorphic to $Q_{4 m}$ and let $d(4 m)$ be the number of isomorphism classes of left braces with multiplicative group isomorphic to $D_{4 m}$. Then

$$
q(4 m)=\left\{\begin{array}{ll}
2 & \text { if } 2 \nmid m \\
6 & \text { if } 2 \| m \\
9 & \text { if } 4 \| m \\
7 & \text { if } 8 \mid m
\end{array} \quad d(4 m)= \begin{cases}3 & \text { if } 2 \nmid m \\
8 & \text { if } 2 \| m \\
7 & \text { if } 4 \| m \\
7 & \text { if } 8 \mid m\end{cases}\right.
$$

Hopf-Galois structures

Hopf-Galois structures

Proposition

Let G be a finite group and let N be a finite abelian group such that $|N|=|G|$. Then the number of Hopf-Galois structures with Galois group G and type N is equal to the number of regular subgroups of $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$ isomorphic to G times $\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(N)|}$.

Hopf-Galois structures

Proposition

Let G be a finite group and let N be a finite abelian group such that $|N|=|G|$. Then the number of Hopf-Galois structures with Galois group G and type N is equal to the number of regular subgroups of $\operatorname{Hol}(N)=N \rtimes \operatorname{Aut}(N)$ isomorphic to G times $\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(N)|}$.

Both the proofs and the Magma computations can be refined in order to find the actual number of regular subgroups.

Thanks for the attention!

