The Quiver-Theoretic Dynamical Yang-Baxter Equation

Davide Ferri University of Pisa

Joint work with Youichi Shibukawa (Hokkaido University)

Groups, Rings, and the Yang–Baxter Equation Blankenberge, June 23, 2023 Let Λ be a nonempty set.

A **quiver** Q over Λ is a directed graph, with set of vertices Λ .

We denote by Q both the quiver and the set of *edges* (or "*arrows*"). We denote by $\mathfrak{s}, \mathfrak{t}: Q \to \Lambda$ the *source* and *target* maps.

A **map of quivers over** Λ is a map between the sets of edges, which preserves the sources and the targets.

A path $x_1 | \dots | x_s$ in Q is a sequence of *composable edges*, i.e.,

$$\mathfrak{s}(x_{i+1})=\mathfrak{t}(x_i).$$

E.g., a path of length 4:

 $\operatorname{Path}(Q)$ has a natural structure of a **category**, with the **junction of paths**.

Identities: id_{λ} is given by ε_{λ} , the *empty path* on λ .

Let Q, R be quivers over the same Λ .

The product $Q \otimes R$ is defined as follows:

$$Q \otimes R = \{(x, y) \mid x \in Q, y \in R, \mathfrak{s}_R(y) = \mathfrak{t}_Q(x)\}$$
$$\mathfrak{s}_{Q \otimes R}(x, y) = \mathfrak{s}_Q(x), \quad \mathfrak{t}_{Q \otimes R}(x, y) = \mathfrak{t}_R(y).$$

In other words, $Q \otimes R$ is the set of all paths

 $Q \otimes Q$ is naturally identified with $\operatorname{Path}_2(Q)$. In the same way, $Q^{\otimes n}$ is naturally identified with $\operatorname{Path}_n(Q)$.

Definition

We say that σ is a solution to the **dynamical Yang-Baxter Equation**, or that σ is a **dynamical Yang-Baxter map**, if it satisfies the following **braid relation**:

 $(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition

$$(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id}) = (\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma).$$

Definition (Shibukawa, 2005)

A **dynamical set** (or *d*-set) over a nonempty Λ is the datum of a set X and a *transition map* $\phi: \Lambda \times X \to \Lambda$.

There exists a notion of maps of d-sets over Λ . The d-sets over Λ form a category $\mathsf{DSet}_{\Lambda}.$

There exists a notion of **tensor product** \otimes for d-sets over Λ .

 $(\mathsf{DSet}_{\Lambda},\otimes)$ is monoidal.

Definition (Shibukawa, 2005)

Let X be a d-set over Λ . A map of d-sets $\sigma: X \otimes X \to X \otimes X$ is a dynamical YB map if and only if it satisfies

$$\sigma_{12}(\lambda)\sigma_{23}(\phi(\lambda,X^{(1)}))\sigma_{12}(\lambda)=\sigma_{23}(\phi(\lambda,X^{(1)}))\sigma_{12}(\lambda)\sigma_{23}(\phi(\lambda,X^{(1)})).$$

There is a fully faithful strong monoidal functor $\mathcal{Q}\colon \mathsf{DSet}_\Lambda\to\mathsf{Quiv}_\Lambda.$ Via this functor,

dynamical YB map σ on a d-set $X \mapsto$ braiding $\mathcal{Q}(\sigma)$ on the quiver $\mathcal{Q}(X)$.

		~ Ľ	4.7
	One object	Multiple objects	
	Sets	Quivers	1
	YBE:	DYBE:	Jul 7
	Braided sets	Braided quivers	
	Structure Monoid	Structure Category	
	Structure Group	Structure Groupoid	
	:	:	

DYBE is a very natural generalisation of YBE: we expect to get a more general theory, just as strong as the YBE theory, with very little effort.

Structure category and structure groupoid

Let σ be a DYBM on \mathscr{A} , and denote $\sigma(x, y) = (x \rightarrow y, x \leftarrow y)$.

Definition

The structure category $\mathscr{C}(\sigma)$ of σ is

$$\mathscr{C}(\sigma) = \langle \mathscr{A} \mid x | y \sim (x \rightharpoonup y) | (x \leftarrow y) \rangle^+,$$

the category $\operatorname{Path}(\mathscr{A})$ modulo the relations $x|y \sim \sigma(x|y)$.

The structure groupoid $\mathscr{G}(\sigma)$ is defined as

$$\mathscr{G}(\sigma) = \langle \mathscr{A} \mid x | y \sim (x \rightharpoonup y) | (x \leftarrow y) \rangle,$$

the category $\operatorname{Path}(\mathscr{A} \cup \mathscr{A}^{\operatorname{op}})$ modulo the relations $x|y \sim \sigma(x|y)$, $xx^{\operatorname{op}} \sim \operatorname{id}, x^{\operatorname{op}} x \sim \operatorname{id}.$

Theorem (Chouraqui, 2010)

Suppose σ is an **involutive non-degenerate** YB map.

Then, the **structure monoid** $M(\sigma)$ is Garside.

Moreover, $M(\sigma)$ embeds in the **structure group** $G(\sigma)$, which is the same as the **fraction group** of $M(\sigma)$, and hence inherits the Garside structure.

A **Garside category** is a category equipped with a special **normal form**. This normal form allows us to solve the **word problem**, in a way which can be **computationally efficient**. We may expect this to generalise to the dynamical case. This is indeed what happens:

Theorem (F.-Shibukawa, 2023)

Suppose σ is an **involutive non-degenerate** dynamical YB map.

Then, the structure category $\mathscr{C}(\sigma)$ is Garside.

The category $\mathscr{C}(\sigma)$ embeds in its enveloping groupoid $\operatorname{Env}(\mathscr{C}(\sigma))$, which inherits the Garside structure. Moreover, $\mathscr{G}(\sigma)$ and $\operatorname{Env}(\mathscr{C}(\sigma))$ are the same groupoid.

Definition

A **right quasigroup** is a set A with a binary operation \circ such that all the right-multiplication maps

$$-\circ a: A \to A$$

$$b \mapsto b \circ a$$
,

for all $a \in A$, are bijections.

Notice that there is no request for associativity.

A brace is the datum of a set A, and of two group structures (A, +), (A, \circ) on A, with (A, +) abelian, such that the following compatibility relation is satisfied:

$$a \circ (b + c) = a \circ b - a + a \circ c$$

for all $a, b, c \in A$.

Definition (D. K. Matsumoto, 2013)

A dynamical brace (or *d*-brace) over Λ is the datum of a dynamical set (A, ϕ) , an abelian group structure (A, +) on A, and a family of right-quasigroup structures $\{(A, \circ_{\lambda})\}_{\lambda \in \Lambda}$ on A, such that the following dynamical associativity holds:

$$a \circ_{\lambda} (b \circ_{\lambda} c) = (a \circ_{\phi(\lambda,c)} b) \circ_{\lambda} c,$$

and such that the following compatibility relation holds:

$$a \circ_{\lambda} (b + c) = a \circ_{\lambda} b - a + a \circ_{\lambda} c$$

for all $\lambda \in \Lambda$, $a, b, c \in A$.

Theorem (Matsumoto, 2013)

From each **dynamical brace** of abelian type, one can construct an involutive non-degenerate **dynamical YB map**.

These are originally constructed as dynamical YB maps on the **d-set** (A, ϕ) .

However, it is not immediately clear how the corresponding quivers look like.

How do we construct the quiver of a dynamical brace?

Let A be a d-brace. We can associate with it a family $\mathscr{S} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ of subsets of the holomorph $S_{\lambda} \subset A \rtimes \operatorname{Aut}(A)$, as follows:

$$S_{\lambda} = \{(a, \gamma_a^{\lambda}) \mid a \in A\}$$

with $\gamma_a^{\lambda} : b \mapsto b \circ_{\lambda} a - a$. Notice that γ_a^{λ} lies in Aut(A, +) for all λ, a . The S_{λ} 's are the vertices of the quiver.

The **edges** are obtained as follows: for each $(a, f) \in S_{\lambda}$ such that $(a, f)^{-1}S_{\lambda} = S_{\mu}$, we draw an edge

$$S_{\lambda} \longrightarrow S_{\mu}.$$

Definition

A d-brace A is **symmetric** if all the S_{λ} 's contain the pair $(0, id_A)$. Equivalently, if all the vertices are looped.

In order to classify the quivers of dynamical braces, it suffices to consider the *maximal symmetric* dynamical braces.

Given an abelian group (A, +), the maximal symmetric dynamical brace on A is **uniquely determined**.

Theorem (F.-Shibukawa, 2023)

The quiver of a symmetric dynamical brace is a disjoint union of **complete quivers**.

The cardinality of each connected component divides the order of A.

The quiver of the maximal symmetric d-brace on $A = \mathbb{Z}/3\mathbb{Z}$

With each d|o(A), we may associate the number n_d of connected components of cardinality d.

Proposition (F.-Shibukawa, 2023)

For $A = \mathbb{Z}/p\mathbb{Z}$, we have

$$n_1 = p,$$
 $n_p = (p-1)^{p-1} - 1.$

Thank you for your attention.