The Quiver-Theoretic Dynamical Yang-Baxter Equation

Davide Ferri
University of Pisa

Joint work with Youichi Shibukawa (Hokkaido University)

Groups, Rings, and the Yang-Baxter Equation Blankenberge, June 23, 2023

Let Λ be a nonempty set.

A quiver Q over Λ is a directed graph, with set of vertices Λ.

We denote by Q both the quiver and the set of edges (or "arrows"). We denote by $\mathfrak{s}, \mathfrak{t}: Q \rightarrow \Lambda$ the source and target maps.

A map of quivers over Λ is a map between the sets of edges, which preserves the sources and the targets.

A path $x_{1}|\ldots| x_{s}$ in Q is a sequence of composable edges, i.e.,

$$
\mathfrak{s}\left(x_{i+1}\right)=\mathfrak{t}\left(x_{i}\right) .
$$

E.g., a path of length 4:

$\operatorname{Path}(Q)$ has a natural structure of a category, with the junction of paths.
Identities: id_{λ} is given by ε_{λ}, the empty path on λ.

Let Q, R be quivers over the same Λ.
The product $Q \otimes R$ is defined as follows:

$$
\begin{gathered}
Q \otimes R=\left\{(x, y) \mid x \in Q, y \in R, \mathfrak{s}_{R}(y)=\mathfrak{t}_{Q}(x)\right\} . \\
\mathfrak{s}_{Q \otimes R}(x, y)=\mathfrak{s}_{Q}(x), \quad \mathfrak{t}_{Q \otimes R}(x, y)=\mathfrak{t}_{R}(y) .
\end{gathered}
$$

In other words, $Q \otimes R$ is the set of all paths

$Q \otimes Q$ is naturally identified with $\operatorname{Path}_{2}(Q)$.
In the same way, $Q^{\otimes n}$ is naturally identified with $\operatorname{Path}_{n}(Q)$.

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Let \mathscr{A} be a quiver, $\sigma: \mathscr{A} \otimes \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ a map of quivers over Λ.

Definition

We say that σ is a solution to the dynamical Yang-Baxter Equation, or that σ is a dynamical Yang-Baxter map, if it satisfies the following braid relation:

$$
(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})=(\mathrm{id} \otimes \sigma)(\sigma \otimes \mathrm{id})(\mathrm{id} \otimes \sigma)
$$

Definition (Shibukawa, 2005)

A dynamical set (or d-set) over a nonempty Λ is the datum of a set X and a transition map $\phi: \Lambda \times X \rightarrow \Lambda$.

There exists a notion of maps of d-sets over Λ. The d-sets over Λ form a category $\mathrm{DSet}_{\mathrm{\Lambda}}$.

There exists a notion of tensor product \otimes for d-sets over Λ.
$\left(\operatorname{DSe}^{\dagger}, \otimes\right)$ is monoidal.

Definition (Shibukawa, 2005)

Let X be a d-set over Λ. A map of d-sets $\sigma: X \otimes X \rightarrow X \otimes X$ is a dynamical $Y B$ map if and only if it satisfies

$$
\sigma_{12}(\lambda) \sigma_{23}\left(\phi\left(\lambda, X^{(1)}\right)\right) \sigma_{12}(\lambda)=\sigma_{23}\left(\phi\left(\lambda, X^{(1)}\right)\right) \sigma_{12}(\lambda) \sigma_{23}\left(\phi\left(\lambda, X^{(1)}\right)\right)
$$

There is a fully faithful strong monoidal functor $\mathcal{Q}: \operatorname{DSet}_{\wedge} \rightarrow$ Quiv $_{\wedge}$. Via this functor,
dynamical YB map σ on a d-set $X \longmapsto$ braiding $\mathcal{Q}(\sigma)$ on the quiver $\mathcal{Q}(X)$.

One object	Multiple objects
Sets	Quivers
BBE:	DYBE:
Braided sets	Braided quivers
Structure Monoid	Structure Category
Structure Group	Structure Groupoid
	\vdots

DYBE is a very natural generalisation of YBE: we expect to get a more general theory, just as strong as the YBE theory, with very little effort.

Structure category and structure groupoid

Let σ be a DYBM on \mathscr{A}, and denote $\sigma(x, y)=(x \rightharpoonup y, x \leftharpoonup y)$.

Definition

The structure category $\mathscr{C}(\sigma)$ of σ is

$$
\mathscr{C}(\sigma)=\langle\mathscr{A}| x|y \sim(x \rightharpoonup y)|(x \leftharpoonup y)\rangle^{+},
$$

the category $\operatorname{Path}(\mathscr{A})$ modulo the relations $x \mid y \sim \sigma(x \mid y)$.
The structure groupoid $\mathscr{G}(\sigma)$ is defined as

$$
\mathscr{G}(\sigma)=\langle\mathscr{A}| x|y \sim(x \rightharpoonup y)|(x \leftharpoonup y)\rangle,
$$

the category $\operatorname{Path}\left(\mathscr{A} \cup \mathscr{A}^{\circ \mathrm{op}}\right)$ modulo the relations $x \mid y \sim \sigma(x \mid y)$, $x x^{\mathrm{OP}} \sim \mathrm{id}, x^{\mathrm{OP}} x \sim \mathrm{id}$.

Garside structure

Theorem (Chouraqui, 2010)

Suppose σ is an involutive non-degenerate УВ map.
Then, the structure monoid $M(\sigma)$ is Garside.
Moreover, $M(\sigma)$ embeds in the structure group $G(\sigma)$, which is the same as the fraction group of $M(\sigma)$, and hence inherits the Garside structure.

A Garside category is a category equipped with a special normal form. This normal form allows us to solve the word problem, in a way which can be computationally efficient.

Garside structure (dynamical case)

We may expect this to generalise to the dynamical case. This is indeed what happens:

Theorem (F.-Shibukawa, 2023)

Suppose σ is an involutive non-degenerate dynamical УВ map.
Then, the structure category $\mathscr{C}(\sigma)$ is Garside.
The category $\mathscr{C}(\sigma)$ embeds in its enveloping groupoid $\operatorname{Env}(\mathscr{C}(\sigma))$, which inherits the Garside structure. Moreover, $\mathscr{G}(\sigma)$ and $\operatorname{Env}(\mathscr{C}(\sigma))$ are the same groupoid.

Preliminaries to dynamical braces

Definition

A right quasigroup is a set A with a binary operation o such that all the right-multiplication maps

$$
\begin{gathered}
-\circ a: A \rightarrow A \\
b \mapsto b \circ a,
\end{gathered}
$$

for all $a \in A$, are bijections.

Notice that there is no request for associativity.

A brace is the datum of a set A, and of two group structures $(A,+),(A, \circ)$ on A, with $(A,+)$ abelian, such that the following compatibility relation is satisfied:

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

for all $a, b, c \in A$.

Definition (D. K. Matsumoto, 2013)

A dynamical brace (or d-brace) over Λ is the datum of a dynamical set (A, ϕ), an abelian group structure $(A,+)$ on A, and a family of right-quasigroup structures $\left\{\left(A, \circ_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ on A, such that the following dynamical associativity holds:

$$
a \circ_{\lambda}\left(b \circ_{\lambda} c\right)=\left(a \circ_{\phi(\lambda, c)} b\right) \circ_{\lambda} c
$$

and such that the following compatibility relation holds:

$$
a \circ_{\lambda}(b+c)=a \circ_{\lambda} b-a+a \circ_{\lambda} c
$$

for all $\lambda \in \Lambda, a, b, c \in A$.

Theorem (Matsumoto, 2013)

From each dynamical brace of abelian type, one can construct an involutive non-degenerate dynamical УB map.

These are originally constructed as dynamical YB maps on the d-set (A, ϕ).

braided quiver.
However, it is not immediately clear how the corresponding quivers look like.

How do we construct the quiver of a dynamical brace?

Let A be a d-brace. We can associate with it a family $\mathscr{S}=\left\{S_{\lambda}\right\}_{\lambda \in \Lambda}$ of subsets of the holomorph $S_{\lambda} \subset A \rtimes \operatorname{Aut}(A)$, as follows:

$$
S_{\lambda}=\left\{\left(a, \gamma_{a}^{\lambda}\right) \mid a \in A\right\}
$$

with $\gamma_{a}^{\lambda}: b \mapsto b \circ_{\lambda} a-a$. Notice that γ_{a}^{λ} lies in $\operatorname{Aut}(A,+)$ for all λ, a.
The S_{λ} 's are the vertices of the quiver.
The edges are obtained as follows: for each $(a, f) \in S_{\lambda}$ such that $(a, f)^{-1} S_{\lambda}=S_{\mu}$, we draw an edge

$$
S_{\lambda} \longrightarrow S_{\mu}
$$

Definition

A d-brace A is symmetric if all the S_{λ} 's contain the pair $\left(0, \mathrm{id}_{A}\right)$. Equivalently, if all the vertices are looped.

In order to classify the quivers of dynamical braces, it suffices to consider the maximal symmetric dynamical braces.

Given an abelian group $(A,+)$, the maximal symmetric dynamical brace on A is uniquely determined.

Theorem (F.-Shibukawa, 2023)
The quiver of a symmetric dynamical brace is a disjoint union of complete quivers.
The cardinality of each connected component divides the order of A.

The quiver of the maximal symmetric d-brace on $A=\mathbb{Z} / 3 \mathbb{Z}$.

With each $d \mid o(A)$, we may associate the number n_{d} of connected components of cardinality d.

Proposition (F.-Shibukawa, 2023)

For $A=\mathbb{Z} / p \mathbb{Z}$, we have

$$
n_{1}=p, \quad n_{p}=(p-1)^{p-1}-1 .
$$

Thank you for your attention.

