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> G/ My(G) if p > 2 (Hertweck).
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Question
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with each H; indecomposable, and

F,G;j = F,H; (foreachi)?



Direct product decompositions

Let
G = EI(G) x NEI(G),

where EI(G) is elementary abelian and NEI(G) has no elementary
abelian direct factors.



Direct product decompositions

Let
G = EI(G) x NEI(G),

where EI(G) is elementary abelian and NEI(G) has no elementary
abelian direct factors.

Theorem (Margolis, Sakurai, Stanojkovski)

El(G) = EI(H), and

kG = kH if and only if
k NEI(G) = kNEI(H).



Direct product decompositions

Let
G = Ab(G) x NAb(G),

where Ab(G) is elementary abelian and NAb(G) has no elementary

abelian direct factors.



Direct product decompositions

Let
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Theorem (GL)

Ab(G) = Ab(H), and

FoG = F,H if and only if
Fp NAb(G) = IF, NAb(H).
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Related questions

Clearly k(G x H) = kG @y kH.

Question (Carlson-Kovacs)

If G is an indecomposable finite p-group, then is kG
indecomposable as tensor product of k-algebras?

In the commutative case, this is true:

Theorem (Carlson-Kovacs)
Let G be a finite abelian p-group. If kG = A1 @ Ao ® -+ ® A, then

G=G x---xGy

and
kG; = A; (for each i).



Ingredients of the proof of

Theorem (GL)

Ab(G) = Ab(H), and

F,G =2 F,H if and only if
Fp, NAb(G) = IF, NAb(H).
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Ingredients of the proof: lattices of normal subgroups

> R ring, G finite group.

» If N < G, then /(RN)RG denotes the ideal of RG generated
by {n—1:n€e N}.

> Let £ be a "rule” that assigns G — L, a sublattice of the
lattice of normal subgroups of G.

» L is canonical if for each isomorphism ¢ : RG — RH there is
an isomorphism of lattices ¢ : Lc — Ly such that

#(I(RN)RG) = I(Rp(N))RH for each N € L.
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» For R =7, G a finite group, L¢ the complete lattice of
normal subgroups of G. Then L is canonical.

» For R =k, and G a finite p-group, and L¢ defined as follows:

80 = {G/}7
Qt(G : N),
Siy1 =8 U Ut(L)N, N,LGS,‘,G/Q N>,
Q.(2(G))N

Le=JSsi

i>1

Then L¢ is canonical.
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If there is time: changing the field
Since kG = k @F, F,,G,

F,G = F,H —> kG = kH.

And the other way around?

> Not true in general: if G and H are finite abelian groups,

QG ~QH & G = H,
CG 2~ CH & |G| = [H|.

» Unknown for G a finite p-group and IF, C k.

Proposition (GL-del Rio)
F any field, G and H finite groups. If FG = FH, then there is a
finite extension Fq of the prime field of F such that FoG = FgH.
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