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The modular isomorphism problem

▶ p prime.

▶ G ,H finite p-groups.

▶ k field of characteristic p.

▶ Fp field with p elements.

Question
What information about G can be recovered from FpG (resp. kG )
as Fp-algebra (resp. as k-algebra)?

In its extreme form,

Question (MIP)

Can the isomorphism type of G be recovered from FpG (resp.
kG )?
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The modular isomorphism problem

Question
What information about G can be recovered from FpG (resp. kG )
as Fp-algebra (resp. as k-algebra)?

The isomorphism types of:
▶ G/G ′ (Coleman)
▶ Z(G ) (Ward)
▶ G/γ2(G )pγ3(G ) (Sandling)

(γi (G ) is the i-th term of the Lower Central Series of G )

▶ G/M3(G ) (Passi-Sehgal),

(Mn(G ) is the n-th term of the Jennings Series of G ,

Mn(G ) =
∏
ipj≥n

γi (G )p
j
)

▶ G/M4(G ) if p > 2 (Hertweck).
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Direct product decompositions

Let
G = G1 × G2 × · · · × Gn,

with each Gi indecomposable as a direct product of groups.

By the Krull-Schmidt theorem, the list of isomorphism types of the
Gi ’s is completely determined by the isomorphism type of G .

Question
If FpG ∼= FpH, then

H = H1 × H2 × · · · × Hn,

with each Hi indecomposable, and

FpGi
∼= FpHi (for each i)?
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Direct product decompositions

Let
G = El(G )× NEl(G ),

where El(G ) is elementary abelian and NEl(G ) has no elementary
abelian direct factors.

Theorem (Margolis, Sakurai, Stanojkovski)

kG ∼= kH if and only if

{
El(G ) ∼= El(H), and

k NEl(G ) ∼= k NEl(H).
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Related questions

Clearly k(G × H) ∼= kG ⊗k kH.

Question (Carlson-Kovacs)

If G is an indecomposable finite p-group, then is kG
indecomposable as tensor product of k-algebras?

In the commutative case, this is true:

Theorem (Carlson-Kovacs)

Let G be a finite abelian p-group. If kG = A1 ⊗A2 ⊗ · · · ⊗An then

G = G1 × · · · × Gn

and
kGi

∼= Ai (for each i).
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Ingredients of the proof of

Theorem (GL)

FpG ∼= FpH if and only if

{
Ab(G ) ∼= Ab(H), and

Fp NAb(G ) ∼= Fp NAb(H).



Ingredients of the proof: lattices of normal subgroups

▶ R ring, G finite group.

▶ If N ⊴ G , then I (RN)RG denotes the ideal of RG generated
by {n − 1 : n ∈ N}.

▶ Let L be a “rule” that assigns G 7→ LG , a sublattice of the
lattice of normal subgroups of G .

▶ L is canonical if for each isomorphism ϕ : RG → RH there is
an isomorphism of lattices ϕ̄ : LG → LH such that

ϕ(I (RN)RG ) = I (Rϕ̄(N))RH for each N ∈ LG .
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Canonical lattices of normal subgroups: examples

▶ For R = Z, G a finite group, LG the complete lattice of
normal subgroups of G . Then L is canonical.

▶ For R = k , and G a finite p-group, and LG defined as follows:

S0 = {G ′},

Si+1 = Si ∪


Ωt(G : N),
℧t(L)N,

Ωt(Z(G ))N

∣∣∣∣∣∣N, L ∈ Si ,G
′ ⊆ N

 ,

LG =
⋃
i≥1

Si .

Then LG is canonical.
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If there is time: changing the field

Since kG ∼= k ⊗Fp FpG ,

FpG ∼= FpH =⇒ kG ∼= kH.

And the other way around?

▶ Not true in general: if G and H are finite abelian groups,

QG ∼= QH ⇔ G ∼= H,

CG ∼= CH ⇔ |G | = |H|.

▶ Unknown for G a finite p-group and Fp ⊆ k .

Proposition (GL-del Ŕıo)

F any field, G and H finite groups. If FG ∼= FH, then there is a
finite extension F0 of the prime field of F such that F0G ∼= F0H.
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Thanks for your attention.


