Segre products and Segre morphisms in a class of Yang-Baxter algebras
Tatiana Gateva-Ivanova

American University in Bulgaria \& and IMI BAS, Sofia
"Groups, rings and the Yang-Baxter equation 2023" June 19-23, 2023 Blankenberge, Belgium

This talk is based on my paper
Gateva-Ivanova, Tatiana. "Segre products and Segre morphisms in a class of Yang-Baxter algebras." Letters in Mathematical Physics 113.2 (2023): 34.

Thanks. My participation in the conference and my talk are partially supported by Grant KP-06 N 32/1, 07.12.2019 of the Bulgarian National Science Fund.

1. "A solution of $Y B E "=" a$ solution" $=" a$ nondegenerate involutive set-theoretic solution (X, r) of YBE"

- The Yang-Baxter algebras $\mathcal{A}_{X}=\mathcal{A}(K, X, r)$ related to solutions (X, r), of finite order $|X|=n$ over a field K will play a central role in the talk.
- It was proven in [GIVB 98] that the quadratic algebra \mathcal{A}_{X} of every finite solution (X, r) of YBE has remarkable algebraic, homological and combinatorial properties. In general, the algebra \mathcal{A}_{X} is noncommutative and in most cases it is not even a PBW algebra, but it preserves various good properties of the commutative polynomial ring $K\left[x_{1}, \cdots, x_{n}\right]$:
- \mathcal{A}_{X} has finite global dimension and polynomial growth,
- \mathcal{A}_{X} is Cohen-Macaulay, Koszul, and a Noetherian domain.
- In the special case when (X, r) is a square-free solution \mathcal{A}_{X} is a PBW Artin-Schelter regular algebra.
- The study of non-commutative algebras defined by quadratic relations as examples of quantum non-commutative spaces has received considerable impetus from the seminal work of Faddeev, Reshetikhin and Takhtajan,1989, and from Manin's Programme for non-commutative geometry, 1991.
- Following Manin (Quantum Groups, 1988) we call the quadratic algebras related to set-theoretic solutions of the Yang-Baxter equation Yang-Baxter algebras (GI, 2004).
- The YB algebras we study are important for both noncommutative algebra and non-commutative algebraic geometry, as they provide a rich source of examples of interesting associative algebras and non-commutative spaces some of which are Artin-Schelter regular algebras.

Main Problem

Let $\left(X, r_{X}\right)$ and $\left(Y, r_{Y}\right)$ be finite solutions of YBE whose Yang-Baxter algebras are $A=\mathcal{A}\left(K, X, r_{X}\right)$ and $B=\mathcal{A}\left(K, Y, r_{Y}\right)$, respectively.
(1) Find a presentation of the Segre product $A \circ B$ in terms of one-generators and linearly independent quadratic relations.
(2) Introduce analogues of Segre maps for the class of Yang-Baxter algebras of finite solutions of YBE.
(3) Study separately Segre products and Segre maps in the special case when $\left(X, r_{X}\right)$ and $\left(Y, r_{Y}\right)$ are square-free solutions.
Note that only in this case the algebras A and B are PBW (binomial skew polynomial rings).
Our approach is entirely algebraic and combinatorial. The problem is solved completely.

4. Segre products of graded algebras

Definition. Let

$$
A=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots \text { and } B=B_{0} \oplus B_{1} \oplus B_{2} \oplus \cdots
$$

be N_{0} - graded algebras over a field K, where $K=A_{0}=B_{0}$ and N_{0} is the set of non-negative integers.
The Segre product of A and B is the N_{0}-graded algebra

$$
A \circ B:=\bigoplus_{i \geq 0}(A \circ B)_{i} \text { with }(A \circ B)_{i}=A_{i} \otimes_{K} B_{i} .
$$

$A \circ B$ is a subalgebra of $A \otimes B$. The embedding is not a graded algebra morphism, as it doubles grading.

Skip*

If A and B are locally finite then the Hilbert function of $A \circ B$ satisfies

$$
\begin{aligned}
h_{A \circ B}(t) & =\operatorname{dim}(A \circ B)_{t}=\operatorname{dim}\left(A_{t} \otimes B_{t}\right) \\
& =\operatorname{dim}\left(A_{t}\right) \cdot \operatorname{dim}\left(B_{t}\right)=h_{A}(t) \cdot h_{B}(t)
\end{aligned}
$$

Moreover, $A \circ B$ inherits various properties from the two algebras A and B. In particular, if both algebras are one-generated, quadratic, and Koszul, then the algebra $A \circ B$ is also one-generated, quadratic, and Koszul.

The quadratic relations of $A \circ B$ (the general case)*

Suppose that A and B are quadratic algebras generated in degree one by A_{1} and B_{1}, resp., written as:

$$
\begin{array}{ll}
A=T\left(A_{1}\right) /\left(\Re_{A}\right) & \text { with } \Re_{A} \subset A_{1} \otimes A_{1}, \\
B=T\left(B_{1}\right) /\left(\Re_{B}\right) & \text { with } \Re_{B} \subset B_{1} \otimes B_{1},
\end{array}
$$

where $T(-)$ is the tensor algebra and $\left(\Re_{A}\right),\left(\Re_{B}\right)$ are the ideals of relations of A and B.
Then $A \circ B$ is also a quadratic algebra generated in degree one by $A_{1} \otimes B_{1}$ and presented as

$$
A \circ B=T\left(A_{1} \otimes B_{1}\right) /\left(s^{23}\left(\Re_{A} \otimes B_{1} \otimes B_{1}+A_{1} \otimes A_{1} \otimes \Re_{B}\right)\right)
$$

where

$$
s^{23}\left(a_{1} \otimes a_{2} \otimes b_{1} \otimes b_{2}\right)=a_{1} \otimes b_{1} \otimes a_{2} \otimes b_{2}
$$

5. The Yang-Baxter algebras

Let $\left(X, r_{1}\right)$ be a solutions of YBE, $|X|=m$. Fix an enumeration $X=\left\{x_{1}, \cdots, x_{m}\right\}$ and extend it to deg-lex order on the free monoid $\langle X\rangle$. The Yang-Baxter algebra $A=\mathcal{A}\left(K, X, r_{1}\right)$ is defined as

$$
\begin{gathered}
A=K\langle X\rangle /\left(\Re_{1}\right), \text { where } \Re_{1} \text { is a set of }\binom{m}{2} \text { binomial relations: } \\
\Re_{1}=\left\{x_{j} x_{i}-x_{i^{\prime}} x_{j^{\prime}} \mid r_{1}\left(x_{j} x_{i}\right)=x_{i^{\prime}} x_{j^{\prime}}, \text { and } x_{j} x_{i}>x_{i^{\prime}} x_{j^{\prime}}\right\} .
\end{gathered}
$$

A is a f.p. quadratic algebra naturally graded by length: $A=A_{0} \oplus A_{1} \oplus A_{2} \oplus, A_{0}=K, A_{1}=\operatorname{Span} X, \cdots$.
Let $\left(Y, r_{2}\right)$ be a solution, with $Y=\left\{y_{1}, \cdots, y_{n}\right\}$. Similarly, we extend the enumeration to deg-lex oreder on $\langle Y\rangle$. The YB-algebra $B=\mathcal{A}\left(K, Y, r_{2}\right)$ is defined as

$$
\begin{gathered}
B=K\langle Y\rangle /\left(\Re_{2}\right) \text {, where } \Re_{2} \text { is a set of }\binom{n}{2} \text { binomial relations : } \\
\Re_{2}=\left\{y_{b} y_{a}-y_{a^{\prime}} y_{b^{\prime}} \mid r_{2}\left(y_{b} y_{a}\right)=y_{a^{\prime}} y_{b^{\prime}} \text { and } y_{b} y_{a}>y_{a^{\prime}} y_{b^{\prime}}\right\} .
\end{gathered}
$$

Similarly, $B=B_{0} \oplus B_{1} \oplus A_{2} \oplus, B_{0}=K, B_{1}=\operatorname{Span} Y, \cdots$ is a quadratic graded algebra.

6. Problem 1.

Find a finite presentation of the Segre product $A \circ B$ in terms of one-generators and linearly independent quadratic relations. Recall that

$$
A \circ B:=\bigoplus_{i \geq 0}(A \circ B)_{i} \text { with }(A \circ B)_{i}=A_{i} \otimes_{K} B_{i}
$$

Skip*

Remark

In general, \Re_{1} and \Re_{2} are not necessarily relations of binomial skew polynomial algebras.
One has

$$
\operatorname{dim} A_{2}=\binom{m+1}{2}, \quad \operatorname{dim} B_{2}=\binom{n+1}{2}
$$

$$
\operatorname{dim}(A \circ B)_{2}=\binom{m+1}{2}\binom{n+1}{2}
$$

7. The Cartesian product of braided sets

Definition. Let $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ be disjoint braided sets (we do not assume involutiveness, nor nondegeneracy). Consider the Cartesian product of sets $X \times Y$ and the bijective map

$$
\begin{gathered}
\mathfrak{r}:(X \times Y) \times(X \times Y) \longrightarrow(X \times Y) \times(X \times Y) \text { defined as } \\
\mathfrak{r}:=s_{23} \circ\left(r_{1} \times r_{2}\right) \circ s_{23},
\end{gathered}
$$

where s_{23} is the flip of the second and the third component. In other words,

$$
\mathfrak{r}\left(\left(x_{j}, y_{b}\right),\left(x_{i}, y_{a}\right)\right):=\left(\left({ }_{j} x_{i},{ }^{y_{b}} y_{a}\right),\left(x_{j}^{x_{i}}, y_{b}^{y_{a}}\right)\right)
$$

for all $i, j \in\{1, \cdots, m\}$ and all $a, b \in\{1, \cdots, n\}$. Then the quadratic set $(X \times Y, \mathfrak{r})$ is a braided set of order $m n$, and we shall refer to it as
the Cartesian product of the braided sets $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$.
8. The Cartesian product of braided sets, $(X \times Y, \mathfrak{r})$ satisfies the following conditions.

- $(X \times Y, \mathfrak{r})$ is nondegenerate iff $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ are nondegenerate.
- $(X \times Y, \mathfrak{r})$ is involutive iff $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ are involutive.
- $(X \times Y, \mathfrak{r})$ is a solution of YBE iff $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ are solutions of YBE.
- $(X \times Y, \mathfrak{r})$ is a square-free solution iff $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ are square-free solutions.

9. Let $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ be solutions on the disjoint sets
$X=\left\{x_{1}, \cdots, x_{m}\right\}$, and $Y=\left\{y_{1}, \cdots, y_{n}\right\}$.
$A \circ B$ is the Segre product of the YB algebras $A=\mathcal{A}\left(K, X, r_{1}\right)$ and $B=\mathcal{A}\left(K, Y, r_{2}\right)$. To simplify notation we write " $x \circ y^{\prime \prime}$ instead of " $x \otimes y^{\prime \prime}, x \in X, y \in Y$, or " $u \circ v$ " instead of " $u \otimes v$ ", for $u \in A_{d}, v \in B_{d}, d \geq 2$. Let

$$
X \circ Y=\left\{x_{i} \circ y_{a} \mid 1 \leq i \leq m, 1 \leq a \leq n\right\} .
$$

Proposition-Notation. There is a natural structure of a solution ($X \circ Y, \mathbf{r}_{X \circ Y}$) given by

$$
\mathbf{r}_{\text {X○Y }}\left(\left(x_{j} \circ y_{b}\right),\left(x_{i} \circ y_{a}\right)\right):=\left(\left(\left(x_{j} x_{i}\right) \circ\left(y_{b} y_{a}\right)\right),\left(\left(x_{j}^{x_{i}}\right) \circ\left(y_{b}^{y_{a}}\right)\right)\right),
$$

$$
1 \leq i, j \leq m, 1 \leq a, b \leq n .
$$

This solution is isomorphic to the Cartesian product of solutions $(X \times Y, \mathfrak{r})$. In particular, $\left(X \circ Y, r_{X \circ Y}\right)$ has cardinality $m n$ and $\left(\begin{array}{c}\binom{X n}{2} \text { nontrivial } r_{X \circ \gamma} \text {-orbits. }\end{array}\right.$

Skip*

$(X \circ Y, \mathbf{r})$ has exactly $m n$ fixed points, namely:

$$
\begin{aligned}
\mathcal{F}= & \left\{\left(x_{p} \circ y_{a}\right)\left(x_{q} \circ y_{b}\right) \mid r_{1}\left(x_{p} x_{q}\right)=x_{p} x_{q}, \text { and } r_{2}\left(y_{a} y_{b}\right)=y_{a} y_{b},\right. \\
& \text { where } p, q \in\{1, \cdots, m\}, a, b \in\{1, \cdots, n\}\} .
\end{aligned}
$$

In this case $x_{p} x_{q} \in \mathcal{N}(A)_{2}$ and $y_{a} y_{b} \in \mathcal{N}(B)_{2}$.

Skip*

Proposition. The YB algebra $\mathfrak{A}=\mathfrak{A}_{X \circ Y}=\mathcal{A}(K, X \circ Y, r)$ is generated by the set $X \circ Y$ and has $\binom{m n}{2}$ quadratic defining relations described in the two lists below.

$$
\begin{gathered}
\text { (1) } f_{j i, b a}=\left(x_{j} \circ y_{b}\right)\left(x_{i} \circ y_{a}\right)-\left(x_{j} x_{i} \circ y_{b} y_{a}\right)\left(x_{j}^{x_{i}} \circ y_{b}^{y_{a}}\right), \\
\text { for all } 1 \leq i, j \leq m \text { s.t. } x_{j}>^{x_{j}} x_{i} \\
\text { and all } 1 \leq a, b \leq n .
\end{gathered}
$$

The leading monomials are $L M\left(f_{j i, b a}\right)=\left(x_{j} \circ y_{b}\right)\left(x_{i} \circ y_{a}\right)$.

$$
\begin{aligned}
& \text { (2) } f_{i j, b a}=\left(x_{i} \circ y_{b}\right)\left(x_{j} \circ y_{a}\right)-\left(x_{i} \circ y_{b} y_{a}\right)\left(x_{j} \circ y_{b}^{y_{a}}\right) \\
& \text { for all } 1 \leq i, j \leq m \text { with } r_{1}\left(x_{i} x_{j}\right)=x_{i} x_{j}, \\
& \text { and all } 1 \leq a, b \leq n, \text { s. t. } y_{b}>y_{b} y_{a} .
\end{aligned}
$$

The leading monomials are $L M\left(f_{i j, b a}\right)=\left(x_{i} \circ y_{b}\right)\left(x_{j} \circ y_{a}\right)$.

10 Corollary

Let $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ be finite solutions and let $A=\mathcal{A}\left(K, X, r_{1}\right)$ and $B=\mathcal{A}\left(K, Y, r_{2}\right)$ be their Yang-Baxter algebras. Then the Segre product, $A \circ B$ is a one-generated quadratic and Koszul algebra.
This is a consequence from the results of GIVB (1998) and a proposition in the book "Quadratic Algebras" PoPo

We also prove that $A \circ B$ is a left and a right Noetherian algebra with polynomial growth.

11. Theorem A

Suppose (X, r_{1}) and (Y, r_{2}) are finite solutions, $X=\left\{x_{1} \cdots, x_{m}\right\}, Y=\left\{y_{1} \cdots, y_{n}\right\}$ are disjoint sets $A=\mathcal{A}\left(K, X, r_{1}\right)$ and $B=\mathcal{A}\left(K, Y, r_{2}\right)$.
Let $A \circ B$ be the Segre product of A and B, and let ($X \circ Y, r_{X \circ Y}$) be the solution of YBE defined above.
Theorem A.
The algebra $A \circ B$ has a set of mn one-generators $W=X \circ Y$ ordered lexicographically:

$$
\begin{aligned}
W=\left\{w_{11}\right. & =x_{1} \circ y_{1}<w_{12}=x_{1} \circ y_{2}<\cdots<w_{1 n}=x_{1} \circ y_{n} \\
& \left.<w_{21}=x_{2} \circ y_{1}<\cdots<w_{m n}=x_{m} \circ y_{n}\right\},
\end{aligned}
$$

and a set of $\binom{m n}{2}+\binom{m}{2}\binom{n}{2}$ linearly independent quadratic relations \Re described below.
12. $\Re=\Re_{a} \cup \Re_{b}$ is a disjoint union.
\Re_{a} is the set of defining relations of the YB-algebra $\mathfrak{A}=\mathcal{A}\left(K, X \circ Y, r_{X \circ Y}\right)$ of the Cartesian prod. $\left(X \circ Y, r_{X \circ Y}\right)$. $\Re_{a}=\Re_{a 1} \cup \Re_{a 2}$ is a disjoint union of order $\left|\Re_{a}\right|=\binom{m n}{2}$.

$$
\begin{aligned}
\Re_{a 1}= & \left\{f_{j i, b a}=\left(x_{j} \circ y_{b}\right)\left(x_{i} \circ y_{a}\right)-\left(x_{i^{\prime}} \circ y_{a^{\prime}}\right)\left(x_{j^{\prime}} \circ y_{b^{\prime}}\right),\right. \\
& 1 \leq i, j \leq m, 1 \leq a, b \leq n, \text { where } \\
& \left.r_{1}\left(x_{j} x_{i}\right)=x_{i^{\prime}} x_{j^{\prime}}, \text { with } j>i^{\prime}, \text { and } r_{2}\left(y_{b} y_{a}\right)=y_{a^{\prime}} y_{b^{\prime}}\right\} \\
& L M\left(f_{j i, b a}\right)=\left(x_{j} \circ y_{b}\right)\left(x_{i} \circ y_{a}\right) .\left|\Re_{a 1}\right|=\binom{m}{2} n^{2} . \\
\Re_{a 2}= & \left\{f_{i j, b a}=\left(x_{i} \circ y_{b}\right)\left(x_{j} \circ y_{a}\right)-\left(x_{i} \circ y_{a^{\prime}}\right)\left(x_{j} \circ y_{b^{\prime}}\right),\right. \\
& 1 \leq i, j \leq m, 1 \leq a, b \leq n, \text { where } \\
& \left.x_{i} x_{j}=r_{1}\left(x_{i} x_{j}\right) \text { and } r_{2}\left(y_{b} y_{a}\right)=y_{a^{\prime}} y_{b^{\prime}}, \text { with } b>a^{\prime}\right\} . \\
& L M\left(f_{i j, b a}\right)=\left(x_{i} \circ y_{b}\right)\left(x_{j} \circ y_{a}\right) .\left|\Re_{a 2}\right|=m\binom{n}{2} .
\end{aligned}
$$

\Re_{b} consists of $\binom{m}{2}\binom{n}{2}$ relations:

$$
\begin{aligned}
\Re_{b}= & \left\{g_{i j, b a}=\left(x_{i} \circ y_{b}\right)\left(x_{j} \circ y_{a}\right)-\left(x_{i} \circ y_{a^{\prime}}\right)\left(x_{j} \circ y_{b^{\prime}}\right),\right. \\
& 1 \leq i, j \leq m, 1 \leq a, b \leq n, \text { where } \\
& \left.r_{1}\left(x_{i} x_{j}\right)>x_{i} x_{j}, r_{2}\left(y_{b} y_{a}\right)=y_{a^{\prime}} y_{b^{\prime}} \text { and } b>a^{\prime}\right\} . \\
& L M\left(g_{i j, b a}\right)=\left(x_{i} \circ y_{b}\right)\left(x_{j} \circ y_{a}\right) .
\end{aligned}
$$

Skip* The proof is in four steps.

(1) $\Re=\Re_{a} \cup \Re_{b}$ is contained in the ideal of relations

$$
I=(\Re(A \circ B))
$$

(2) We count

$$
\left|\Re_{a}\right|=\binom{m n}{2} ;\left|\Re_{b}\right|=\binom{m}{2}\binom{n}{2} ;|\Re|=\binom{m n}{2}+\binom{m}{2}\binom{n}{2} .
$$

(3) The set of polynomials $\Re \subset K\langle W\rangle$ is linearly independent.
(4)

$$
\begin{gathered}
I_{2} \oplus(A \circ B)_{2}=(K\langle W\rangle)_{2} \\
\operatorname{dim}_{K} I_{2}+\operatorname{dim}_{K}(A \circ B)_{2}=m^{2} n^{2}=\operatorname{dim}_{K}(K\langle W\rangle)_{2} \\
\operatorname{dim}_{K}(\operatorname{Span} \Re)+\operatorname{dim}_{K}(A \circ B)_{2}=m^{2} n^{2}
\end{gathered}
$$

Hence $(\Re)_{2}=I_{2}$, and \Re generates the ideal of relations of the algebra $A \circ B$.

13. Segre maps of Yang-Baxter algebras

Problem 2. Introduce noncommutative analogues of Segre maps in the class of Yang-Baxter algebras of finite solutions. We have to find a solution $\left(Z, r_{Z}\right)$, with YB-algebra \mathfrak{A}_{Z} and a homomorphism of graded algebras:

$$
S: \mathfrak{A}_{Z} \longrightarrow A \otimes B
$$

s.t. $\operatorname{ImS}=A \circ B$ and to find ker S.

Definition-Notation. Let $Z=\left\{z_{11}, z_{12}, \cdots, z_{m n}\right\}$ be a set of order $m n$, disjoint with X and Y. Define a map

$$
\mathfrak{r}: Z \times Z \longrightarrow Z \times Z
$$

induced canonically from the solution $\left(X \circ Y, r_{X \circ Y}\right)$:

$$
\begin{aligned}
\mathfrak{r}\left(z_{j b}, z_{i a}\right) & =\left(z_{i^{\prime} a^{\prime},}, z_{j^{\prime} b^{\prime}}\right) \text { iff } \\
& r_{X \circ Y}\left(x_{j} \circ y_{b}, x_{i} \circ y_{a}\right)=\left(x_{i^{\prime}} \circ y_{a^{\prime}}, x_{j^{\prime}} \circ y_{b^{\prime}}\right) .
\end{aligned}
$$

(Z, \mathfrak{r}) is a solution of YBE isomorphic to $\left(X \circ Y, r_{X \circ Y}\right)$ (and to the Cartesian product $\left(X \times Y, r_{X \times Y}\right)$).
Fix the deg-lex order on the free monoid $\langle Z\rangle$ induced by the enumeration

14. Segre maps of Yang-Baxter algebras

Lemma. In notation as above. Let $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ be solutions on the finite disjoint sets $X=\left\{x_{1}, \cdots, x_{m}\right\}$, and $Y=\left\{y_{1}, \cdots, y_{n}\right\}$, and let $A=\mathcal{A}\left(K, X, r_{1}\right)$, and $B=\mathcal{A}\left(K, Y, r_{2}\right)$ be the corresponding YB algebras. Let (Z, r) be the solution of order $m n$ defined in Def-Notation, and let $\mathfrak{A}_{Z}=\mathcal{A}(K, Z, \mathfrak{r})$ be its YB algebra. Then the assignment

$$
z_{11} \mapsto x_{1} \otimes y_{1}, z_{12} \mapsto x_{1} \otimes y_{2}, \cdots, z_{m n} \mapsto x_{m} \otimes y_{n}
$$

extents to an algebra homomorphism

$$
s_{m, n}: \mathfrak{A}_{\mathrm{Z}} \longrightarrow A \otimes_{K} B
$$

Definition. We call the map $s_{m, n}: \mathfrak{A}_{Z} \longrightarrow A \otimes_{K} B$ the (m, n)-Segre map.

15. Assumptions and notations as above

$\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ are disjoint solutions

$$
X=\left\{x_{1}, \cdots, x_{m}\right\}, \quad Y=\left\{y_{1}, \cdots, y_{n}\right\}
$$

A and B - the corresponding Yang-Baxter algebras. (Z, \mathfrak{r}) is the solution on the set

$$
Z=\left\{z_{11}, \cdots, z_{m n}\right\}
$$

isom. to $\left(X \circ Y, r_{X \circ Y}\right)$ and to the Cartesian product $\left(X \times Y, r_{X \times Y}\right) . \mathfrak{A}_{Z}=\mathcal{A}(K, Z, r)$ is its YB- algebra.
$s_{m, n}: \mathfrak{A}_{\mathrm{Z}} \longrightarrow A \otimes_{\mathbf{k}} B$ is the Segre map extending the assignment

$$
z_{11} \mapsto x_{1} \circ y_{1}, z_{12} \mapsto x_{1} \circ y_{2}, \cdots, z_{m n} \mapsto x_{m} \circ y_{n} .
$$

Theorem B.

(1) The image of the Segre map $s_{m, n}$ is the Segre product $A \circ B$. Moreover, $s_{m, n}: \mathfrak{A}_{\mathrm{Z}} \longrightarrow A \circ B$ is a homomorphism of graded algebras.
(2) The kernel $\mathfrak{K}=\operatorname{ker}\left(s_{m, n}\right)$ of the Segre map is generated by the set \Re_{s} of $\binom{m}{2}\binom{n}{2}$ linearly independent quadratic binomials described below

$$
\begin{aligned}
\Re_{s}= & \left\{h_{i j, b a}=z_{i b} z_{j a}-z_{i a^{\prime}} z_{j b^{\prime}}, 1 \leq i, j \leq m, 1 \leq a, b \leq n \mid\right. \\
& \left.r_{1}\left(x_{i} x_{j}\right)>x_{i} x_{j}, \text { and } r_{2}\left(y_{b} y_{a}\right)=y_{a^{\prime}} y_{b^{\prime}} \text { with } b>a^{\prime}\right\} .
\end{aligned}
$$

Sketch of proof. (i) \Re_{s} consists of nonzero elements of \mathfrak{A}_{Z}. (ii) $s_{m, n}\left(\Re_{s}\right)=\Re_{b}$ therefore $\Re_{s} \subset \mathfrak{K}=\operatorname{ker}\left(s_{m, n}\right)$, moreover \Re_{s} is linearly indept.
(iii) \Re_{s} is a minimal set of generators of the kernel \mathfrak{K}.

17. Corollary.

Let $A=\mathcal{A}\left(K, X, r_{1}\right)$, and $B=\mathcal{A}\left(K, Y, r_{2}\right)$, be the Yang-Baxter algebras of the finite solutions $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$. Then the Segre product $A \circ B$ is a left and a right Noetherian algebra. Moreover, $A \circ B$ has polynomial growth. Moreover, $A \circ B$ is Koszul.

18. Open Question

(1) Let $A=\mathcal{A}\left(K, X, r_{1}\right)$, and $B=\mathcal{A}\left(K, Y, r_{2}\right)$, be the Yang-Baxter algebras of the finite solutions (X, r_{1}) and $\left(Y, r_{2}\right)$. Is it true that the Segre product $A \circ B$ is a domain?
(2) Let $A=\mathcal{A}\left(K, X, r_{1}\right)$, and $B=\mathcal{A}\left(K, Y, r_{2}\right)$, be the YB algebras of the finite square-free solutions $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$. Is it true that the Segre product $A \circ B$ is a domain?
(3) Let A and B be binomial skew polynomial algebras. Is it true that the Segre product $A \circ B$ is a domain?
(2) and (3) are equivalent. We expect that due to the good algebraic and combinatorial properties of A and B, the answer is affirmative. In cases (2) and (3) the Segre product $A \circ B$ is a PBW algebra whose quadratic relations are explicitly given. Observe that A and B are Noetherian domains, and $A \circ B$ is a subalgebra of the tensor product $A \otimes B$. However, it is shown by Rowen that the tensor product $D_{1} \otimes_{F} D_{2}$ of two division algebras over an algebraically closed field contained in their centers may not be a domain.
19. Segre products and Segre maps for the YB algebras of square-free solutions

Among all Yang-Baxter algebras of finite solutions $A=\mathcal{A}(X, r)$ the only PBW algebras $A=\mathcal{A}(K, X, r)$ are those corresponding to square-free solutions.
Theorem
(GI 2022) If (X, r) is a finite solution of YBE then its Yang-Baxter algebra $\mathcal{A}=\mathcal{A}(K, X, r)$ is a PBW algebra with respect to a proper enumeration $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ iff (X, r) is a square-free solution.
20. From now on $\left(X, r_{1}\right)$ and $\left(Y, r_{2}\right)$ are disjoint square-free solutions,

$$
X=\left\{x_{1}, \cdots, x_{m}\right\}, \quad \text { and } \quad Y=\left\{y_{1}, \cdots, y_{n}\right\}
$$

are enumerated so that the Yang-Baxter algebras $A=\mathcal{A}\left(K, X, r_{1}\right)$, and $B=\mathcal{A}\left(K, Y, r_{2}\right)$ are binomial skew polynomial rings with respect to these enumerations.

Theorem C.

The Segre product $A \circ B$ satisfies the following conditions.
(1) $A \circ B$ is a PBW algebra with a set of mn PBW generators

$$
\begin{aligned}
W=X \circ Y= & \left\{w_{11}=x_{1} \circ y_{1}, w_{12}=x_{1} \circ x_{2}, \cdots,\right. \\
& \left.\cdots, w_{1 n}=x_{1} \circ y_{n}, \cdots, w_{m n}=x_{m} \circ x_{n}\right\}
\end{aligned}
$$

ordered lexicographically, and a standard finite presentation

$$
A \circ B \simeq K\left\langle w_{11}, \cdots, w_{m n}\right\rangle /(\Re),
$$

where the set of relations \Re is a Gröbner basis of the ideal $I=(\Re)$ and consists of $\binom{m n}{2}+\binom{m}{2}\binom{n}{2}$ square-free quadratic polynomials described in Theorem A.
(2) $A \circ B$ is a Koszul algebra.
(3) $A \circ B$ is left and right Noetherian.
(4) The algebra $A \circ B$ has polynomial growth and infinite global dimension.

22. Segre morphisms for YB algebras of square-free

 solutionsTheorem D below shows that our (noncommutative) analogue of Segre morphisms for Yang-Baxter algebras of finite solutions (the general case) can be defined also for the subclass of Yang-Baxter algebras related to square-free solutions. This is in contrast with our recent results on Veronese subalgebras which imply that the noncommutative analogue of Veronese morphisms for the class of Yang-Baxter algebras related to (arbitrary) finite solutions of YBE, introduced in [GI22] can not be restricted to the subclass of YB algebras of square-free solutions.
Hypothesis of Theorem D. Assumptions and notation as above. Suppose (X, r_{1}) and $\left(Y, r_{2}\right)$ are disjoint square-free solutions, $X=\left\{x_{1}, \cdots, x_{m}\right\}, Y=\left\{y_{1}, \cdots, y_{n}\right\}$ enumerated so that the Yang-Baxter algebras $A=\mathcal{A}\left(K, X, r_{1}\right)$, and $B=\mathcal{A}\left(K, Y, r_{2}\right)$ are binomial skew polynomial rings w.r.t. these enumerations. Let $\left(Z, r_{Z}\right)$ be the square-free solution on the set $Z=\left\{z_{1,}, \cdots, z_{m n}\right\}$, isomorphic the Cartesian product of

Theorem D.

Let $\left(Z, r_{Z}\right)$ be the square-free solution on the set $Z=\left\{z_{11}, \cdots, z_{m n}\right\}$, isomorphic the Cartesian product of solutions $(X \circ Y, \mathfrak{r})$, and let $\mathfrak{A}=\mathcal{A}\left(K, Z, r_{Z}\right)$ be its $Y B$ algebra. (We know that \mathfrak{A} is also a binomial skew-polynomial ring). Let

$$
s_{m, n}: \mathfrak{A}=\longrightarrow A \otimes_{k} B
$$

be the Segre map extending the assignment
$z_{11} \mapsto x_{1} \circ y_{1}, z_{12} \mapsto x_{1} \circ y_{2}, \cdots, z_{m n} \mapsto x_{m} \circ y_{n}$.
(1) The image of the Segre map $s_{m, n}$ is the Segre product $A \circ B$.
(2) The kernel $\mathfrak{K}=\operatorname{ker}\left(s_{m, n}\right)$ is generated by the set of $\binom{m}{2}\binom{n}{2}$ linearly independent quadratic binomials listed below:

$$
\begin{gathered}
h_{i j, b a}=z_{i b} z_{j a}-z_{i a^{\prime}} z_{j b^{\prime}}, 1 \leq i<j \leq m, 1 \leq a<b \leq n \\
\text { where } r_{2}\left(y_{b} y_{a}\right)=y_{a^{\prime}} y_{b^{\prime}} \text { with } b>a^{\prime}, a^{\prime}<b^{\prime} .
\end{gathered}
$$

24. An Example of $A \circ B$

$$
\begin{aligned}
& A=\mathcal{A}\left(K, X, r_{1}\right)=K\left\langle x_{1}, x_{2}, x_{3}\right\rangle /\left(x_{3} x_{2}-x_{1} x_{3}, x_{3} x_{1}-x_{2} x_{3}, x_{2} x_{1}-x_{1} x_{2}\right) \\
& B=\mathcal{A}\left(K, Y, r_{2}\right)=K\left\langle y_{1}, y_{2}\right\rangle /\left(y_{2}^{2}-y_{1}^{2}\right) .
\end{aligned}
$$

A is a binomial skew-polynomial ring, its rel. form a Gröbner basis of the ideal they generate. The relations of B do not form a Gröbner basis of the ideal $J=\left(y_{2}^{2}-y_{1}^{2}\right)$. The reduced Gr. basis of J is $G=\left\{y_{2}^{2}-y_{1}^{2}, y_{2} y_{1} y_{1}-y_{1} y_{1} y_{2}\right\}$.
Let $A \circ B$ be the Segre product of A and B, and let $\left(X \circ Y, r_{X \circ Y}\right)$ be the solution isomorphic to the Cartesian product of solutions $(X \times Y, \mathfrak{r})$.
$A \circ B$ is a quadratic algebra with a set of $\mathbf{6}$ one-generators

$$
W=\left\{\begin{array}{l}
w_{11}=x_{1} \circ y_{1}, w_{12}=x_{1} \circ y_{2}, w_{21}=x_{2} \circ y_{1} \\
\left.w_{22}=x_{2} \circ y_{2}, w_{31}=x_{3} \circ y_{1}, w_{32}=x_{3} \circ y_{2}\right\}
\end{array}\right.
$$

and 18 defining quadratic relations.

$A \circ B \simeq K\left\langle w_{11}, w_{12}, w_{21}, w_{22}, w_{31}, w_{32}\right\rangle /(\Re)$

$\Re=\Re_{a} \cup \Re_{b}$ is a disjoint union of quadratic relations, where \Re_{a} are the relations of the YB algebra $\mathfrak{A}_{\mathrm{X} \circ \gamma}$ with $\left|\Re_{a}\right|=15$, $\Re_{a}=\Re_{a 1} \cup \Re_{a 2}$,

$$
\begin{aligned}
& \Re_{a 1}=\left\{\quad f_{32,22}=w_{32} w_{22}-w_{11} w_{31}, \quad f_{32,11}=w_{31} w_{21}-w_{12} w_{32},\right. \\
& f_{32,21}=w_{32} w_{21}-w_{12} w_{31}, \quad f_{32,12}=w_{31} w_{22}-w_{11} w_{32}, \\
& f_{31,22}=w_{32} w_{12}-w_{21} w_{31}, \quad f_{31,11}=w_{31} w_{11}-w_{22} w_{32}, \\
& f_{31,21}=w_{32} w_{11}-w_{22} w_{31}, \quad f_{31,12}=w_{31} w_{12}-w_{21} w_{32}, \\
& f_{21,22}=w_{22} w_{12}-w_{11} w_{21}, \quad f_{21,11}=w_{21} w_{11}-w_{12} w_{22}, \\
& \left.f_{21,21}=w_{22} w_{11}-w_{12} w_{21}, \quad f_{21,12}=w_{21} w_{12}-w_{11} w_{22} \quad\right\} . \\
& \Re_{a 2}=\left\{\quad f_{33,22}=w_{32} w_{32}-w_{31} w_{31}, \quad f_{22,22}=w_{22} w_{22}-w_{21} w_{21},\right. \\
& \left.f_{11,22}=w_{12} w_{12}-w_{11} w_{11}\right\} . \\
& \Re_{b}=\left\{\quad g_{23,22}=w_{22} w_{32}-w_{21} w_{31}, g_{13,22}=w_{12} w_{32}-w_{11} w_{31},\right. \\
& \left.g_{12,22}=w_{12} w_{22}-w_{11} w_{21}\right\} .
\end{aligned}
$$

Let $\left(Z, r_{Z}\right)$ be the solution isomorphic to the Cartesian product $\left(X \circ Y, r_{X \circ Y}\right)$, where
$Z=\left\{z_{11}, z_{12}, z_{21}, z_{22}, z_{31}, z_{32}\right\}$. The YB algebra $\mathfrak{A}_{Z}=\mathcal{A}\left(K, Z, r_{Z}\right)$ has a finite presentation

$$
\begin{aligned}
& \mathfrak{A}_{z}=K\left\langle z_{11}, z_{12}, z_{21}, z_{22}, z_{31}, z_{32}\right\rangle /\left(\Re\left(\mathfrak{A}_{z}\right)\right), \\
& \Re\left(\mathfrak{A}_{Z}\right)=\left\{\quad f_{32,22}=z_{32} z_{22}-z_{11} z_{31}, \quad f_{32,11}=z_{31} z_{21}-z_{12} z_{32},\right. \\
& f_{32,21}=z_{32} z_{21}-z_{12} z_{31}, \quad f_{32,12}=z_{31} z_{22}-z_{11} z_{32}, \\
& f_{31,22}=z_{32} z_{12}-z_{21} z_{31}, \quad f_{31,11}=z_{31} z_{11}-z_{22} z_{32} \text {, } \\
& f_{31,21}=z_{32} z_{11}-z_{22} z_{31}, \quad f_{31,12}=z_{31} z_{12}-z_{21} z_{32} \text {, } \\
& f_{21,22}=z_{22} z_{12}-z_{11} z_{21}, \quad f_{21,11}=z_{21} z_{11}-z_{12} z_{22}, \\
& f_{21,21}=z_{22} z_{11}-z_{12} z_{21}, \quad f_{21,12}=z_{21} z_{12}-z_{11} z_{22}, \\
& f_{33,22}=z_{32} z_{32}-z_{31} z_{31}, \quad f_{22,22}=z_{22} z_{22}-z_{21} z_{21}, \\
& \left.f_{11,22}=z_{12} z_{12}-z_{11} z_{11}\right\} .
\end{aligned}
$$

$\left(Z, r_{Z}\right)$ is not a square-free solution, and therefore, the defining relations $\Re\left(\mathfrak{A}_{Z}\right)$ do not form a Gröbner basis.

The Segre map $s_{3,2}: \mathfrak{A}_{\mathrm{Z}} \longrightarrow A \otimes B$ has image $A \circ B$. The kernel $\operatorname{ker}\left(s_{3,2}\right)$ is the ideal of \mathfrak{A}_{Z} generated by the following three polynomials

$$
\begin{aligned}
& t_{23,22}=z_{22} z_{32}-z_{21} z_{31}, \\
& t_{13,22}=z_{12} z_{32}-z_{11} z_{31}, \\
& t_{12,22}=z_{12} z_{22}-z_{11} z_{21} .
\end{aligned}
$$

