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1. ”A solution of YBE” = ”a solution” = ”a
nondegenerate involutive set-theoretic solution (X, r) of
YBE”

• The Yang-Baxter algebras AX = A(K, X, r) related to
solutions (X, r), of finite order |X| = n over a field K will
play a central role in the talk.

• It was proven in [GIVB 98] that the quadratic algebra AX
of every finite solution (X, r) of YBE has remarkable
algebraic, homological and combinatorial properties.
In general, the algebra AX is noncommutative and in most
cases it is not even a PBW algebra, but it preserves various
good properties of the commutative polynomial ring
K[x1, · · · , xn]:

• AX has finite global dimension and polynomial growth,
• AX is Cohen-Macaulay, Koszul, and a Noetherian domain.
• In the special case when (X, r) is a square-free solution AX

is a PBW Artin-Schelter regular algebra.



• The study of non-commutative algebras defined by
quadratic relations as examples of quantum
non-commutative spaces has received considerable impetus
from the seminal work of Faddeev, Reshetikhin and
Takhtajan,1989, and from Manin’s Programme for
non-commutative geometry, 1991.

• Following Manin (Quantum Groups, 1988) we call the
quadratic algebras related to set-theoretic solutions of the
Yang-Baxter equation Yang-Baxter algebras (GI, 2004).

• The YB algebras we study are important for both
noncommutative algebra and non-commutative algebraic
geometry, as they provide a rich source of examples of
interesting associative algebras and non-commutative
spaces some of which are Artin-Schelter regular algebras.



Main Problem

Let (X, rX) and (Y, rY) be finite solutions of YBE whose
Yang-Baxter algebras are A = A(K, X, rX) and B = A(K, Y, rY),
respectively.
(1) Find a presentation of the Segre product A ◦ B in terms of

one-generators and linearly independent quadratic
relations.

(2) Introduce analogues of Segre maps for the class of
Yang-Baxter algebras of finite solutions of YBE.

(3) Study separately Segre products and Segre maps in the
special case when (X, rX) and (Y, rY) are square-free
solutions.
Note that only in this case the algebras A and B are PBW
(binomial skew polynomial rings).

Our approach is entirely algebraic and combinatorial. The
problem is solved completely.



4. Segre products of graded algebras

Definition. Let

A = A0 ⊕ A1 ⊕ A2 ⊕ · · · and B = B0 ⊕ B1 ⊕ B2 ⊕ · · ·

be N0- graded algebras over a field K, where K = A0 = B0 and
N0 is the set of non-negative integers.
The Segre product of A and B is the N0-graded algebra

A ◦ B :=
⊕
i≥0

(A ◦ B)i with (A ◦ B)i = Ai ⊗K Bi.

A ◦ B is a subalgebra of A ⊗ B.
The embedding is not a graded algebra morphism, as it
doubles grading.



Skip*

If A and B are locally finite then the Hilbert function of A ◦ B
satisfies

hA◦B(t) = dim(A ◦ B)t = dim(At ⊗ Bt)
= dim(At) · dim(Bt) = hA(t) · hB(t).

Moreover, A ◦ B inherits various properties from the two
algebras A and B. In particular, if both algebras are
one-generated, quadratic, and Koszul, then the algebra A ◦ B is
also one-generated, quadratic, and Koszul.



The quadratic relations of A ◦ B (the general case)*

Suppose that A and B are quadratic algebras generated in
degree one by A1 and B1, resp., written as:

A = T(A1)/(ℜA) with ℜA ⊂ A1 ⊗ A1,
B = T(B1)/(ℜB) with ℜB ⊂ B1 ⊗ B1,

where T(−) is the tensor algebra and (ℜA), (ℜB) are the ideals
of relations of A and B.
Then A ◦ B is also a quadratic algebra generated in degree one
by A1 ⊗ B1 and presented as

A ◦ B = T(A1 ⊗ B1)/(s23(ℜA ⊗ B1 ⊗ B1 + A1 ⊗ A1 ⊗ℜB)),

where
s23(a1 ⊗ a2 ⊗ b1 ⊗ b2) = a1 ⊗ b1 ⊗ a2 ⊗ b2.



5. The Yang-Baxter algebras
Let (X, r1) be a solutions of YBE, |X| = m. Fix an enumeration
X = {x1, · · · , xm} and extend it to deg-lex order on the free
monoid ⟨X⟩. The Yang-Baxter algebra A = A(K, X, r1) is
defined as

A = K⟨X⟩/(ℜ1), where ℜ1 is a set of (m
2) binomial relations :

ℜ1 = {xjxi − xi′xj′ | r1(xjxi) = xi′xj′ , and xjxi > xi′xj′}.

A is a f.p. quadratic algebra naturally graded by length:
A = A0 ⊕ A1 ⊕ A2⊕, A0 = K, A1 = SpanX, · · · .
Let (Y, r2) be a solution, with Y = {y1, · · · , yn}. Similarly, we
extend the enumeration to deg-lex oreder on ⟨Y⟩. The
YB-algebra B = A(K, Y, r2) is defined as

B = K⟨Y⟩/(ℜ2), where ℜ2 is a set of (n
2) binomial relations :

ℜ2 = {ybya − ya′yb′ | r2(ybya) = ya′yb′ and ybya > ya′yb′}.

Similarly,B = B0 ⊕ B1 ⊕ A2⊕, B0 = K, B1 = SpanY, · · · is a
quadratic graded algebra.



6. Problem 1.

Find a finite presentation of the Segre product A ◦ B in terms of
one-generators and linearly independent quadratic relations. Recall
that

A ◦ B :=
⊕
i≥0

(A ◦ B)i with (A ◦ B)i = Ai ⊗K Bi.



Skip*

Remark
In general, ℜ1 and ℜ2 are not necessarily relations of binomial skew
polynomial algebras.
One has

dim A2 =

(
m + 1

2

)
, dim B2 =

(
n + 1

2

)
,

dim(A ◦ B)2 =

(
m + 1

2

)(
n + 1

2

)
.



7. The Cartesian product of braided sets

Definition. Let (X, r1) and (Y, r2) be disjoint braided sets (we
do not assume involutiveness, nor nondegeneracy). Consider
the Cartesian product of sets X × Y and the bijective map

r : (X × Y)× (X × Y) −→ (X × Y)× (X × Y) defined as
r := s23 ◦ (r1 × r2) ◦ s23,

where s23 is the flip of the second and the third component. In
other words,

r((xj, yb), (xi, ya)) := ((xjxi, ybya), (x
xi
j , yya

b )),

for all i, j ∈ {1, · · · , m} and all a, b ∈ {1, · · · , n}. Then the
quadratic set (X × Y, r) is a braided set of order mn, and we
shall refer to it as
the Cartesian product of the braided sets (X, r1) and (Y, r2).



8. The Cartesian product of braided sets, (X × Y, r)
satisfies the following conditions.

• (X × Y, r) is nondegenerate iff (X, r1) and (Y, r2) are
nondegenerate.

• (X × Y, r) is involutive iff (X, r1) and (Y, r2) are involutive.
• (X × Y, r) is a solution of YBE iff (X, r1) and (Y, r2) are

solutions of YBE.
• (X × Y, r) is a square-free solution iff (X, r1) and (Y, r2) are

square-free solutions.



9. Let (X, r1) and (Y, r2) be solutions on the disjoint sets
X = {x1, · · · , xm}, and Y = {y1, · · · , yn}.

A ◦ B is the Segre product of the YB algebras A = A(K, X, r1)
and B = A(K, Y, r2). To simplify notation we write ”x ◦ y”
instead of ”x ⊗ y”, x ∈ X, y ∈ Y, or ”u ◦ v” instead of ”u ⊗ v”,
for u ∈ Ad, v ∈ Bd, d ≥ 2. Let

X ◦ Y = {xi ◦ ya | 1 ≤ i ≤ m, 1 ≤ a ≤ n}.

Proposition-Notation. There is a natural structure of a solution
(X ◦ Y, rX◦Y) given by

rX◦Y((xj ◦ yb), (xi ◦ ya)) := (((xjxi) ◦ (ybya)), ((xj
xi) ◦ (yya

b ))),

1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n.
This solution is isomorphic to the Cartesian product of
solutions (X × Y, r). In particular, (X ◦ Y, rX◦Y) has cardinality
mn and (mn

2 ) nontrivial rX◦Y-orbits.



Skip*

(X ◦ Y, r) has exactly mn fixed points, namely:

F = {(xp ◦ ya)(xq ◦ yb) | r1(xpxq) = xpxq, and r2(yayb) = yayb,
where p, q ∈ {1, · · · , m}, a, b ∈ {1, · · · , n}}.

In this case xpxq ∈ N (A)2 and yayb ∈ N (B)2.



Skip*

Proposition. The YB algebra A = AX◦Y = A(K, X ◦ Y, r) is
generated by the set X ◦ Y and has (mn

2 ) quadratic defining
relations described in the two lists below.

(1) fji,ba = (xj ◦ yb)(xi ◦ ya)− (xjxi ◦ ybya)(x
xi
j ◦ yya

b ),
for all 1 ≤ i, j ≤ m s.t. xj >

xjxi,
and all 1 ≤ a, b ≤ n.

The leading monomials are LM(fji,ba) = (xj ◦ yb)(xi ◦ ya).

(2) fij,ba = (xi ◦ yb)(xj ◦ ya)− (xi ◦ ybya)(xj ◦ yya
b ),

for all 1 ≤ i, j ≤ m with r1(xixj) = xixj,
and all 1 ≤ a, b ≤ n, s. t. yb >

ybya.

The leading monomials are LM(fij,ba) = (xi ◦ yb)(xj ◦ ya).



10 Corollary

Let (X, r1) and (Y, r2) be finite solutions and let A = A(K, X, r1)
and B = A(K, Y, r2) be their Yang-Baxter algebras. Then the
Segre product, A ◦ B is a one-generated quadratic and Koszul
algebra.
This is a consequence from the results of GIVB (1998) and a
proposition in the book ”Quadratic Algebras” PoPo

We also prove that A ◦ B is a left and a right Noetherian algebra
with polynomial growth.



11. Theorem A

Suppose (X, r1) and (Y, r2) are finite solutions,
X = {x1 · · · , xm}, Y = {y1 · · · , yn} are disjoint sets
A = A(K, X, r1) and B = A(K, Y, r2).
Let A ◦ B be the Segre product of A and B, and let
(X ◦ Y, rX◦Y) be the solution of YBE defined above.

Theorem A.
The algebra A ◦ B has a set of mn one-generators W = X ◦ Y ordered
lexicographically:

W = {w11 = x1 ◦ y1 < w12 = x1 ◦ y2 < · · · < w1n = x1 ◦ yn
< w21 = x2 ◦ y1 < · · · < wmn = xm ◦ yn},

and a set of (mn
2 ) + (m

2)(
n
2) linearly independent quadratic relations ℜ

described below.



12. ℜ = ℜa ∪ ℜb is a disjoint union.
ℜa is the set of defining relations of the YB-algebra

A = A(K, X ◦ Y, rX◦Y) of the Cartesian prod. (X ◦ Y, rX◦Y).
ℜa = ℜa1 ∪ ℜa2 is a disjoint union of order |ℜa| = (mn

2 ).

ℜa1 = {fji,ba = (xj ◦ yb)(xi ◦ ya)− (xi′ ◦ ya′)(xj′ ◦ yb′),
1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n, where
r1(xjxi) = xi′xj′ , with j > i′, and r2(ybya) = ya′yb′}
LM(fji,ba) = (xj ◦ yb)(xi ◦ ya). |ℜa1| = (m

2)n
2.

ℜa2 = {fij,ba = (xi ◦ yb)(xj ◦ ya)− (xi ◦ ya′)(xj ◦ yb′),
1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n, where
xixj = r1(xixj) and r2(ybya) = ya′yb′ , with b > a′}.
LM(fij,ba) = (xi ◦ yb)(xj ◦ ya). |ℜa2| = m(n

2).

ℜb consists of (m
2)(

n
2) relations:

ℜb = {gij,ba = (xi ◦ yb)(xj ◦ ya)− (xi ◦ ya′)(xj ◦ yb′),
1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n, where
r1(xixj) > xixj, r2(ybya) = ya′yb′ and b > a′}.
LM(gij,ba) = (xi ◦ yb)(xj ◦ ya).



Skip* The proof is in four steps.

(1) ℜ = ℜa ∪ ℜb is contained in the ideal of relations
I = (ℜ(A ◦ B)).

(2) We count

|ℜa| =
(

mn
2

)
; |ℜb| =

(
m
2

)(
n
2

)
; |ℜ| =

(
mn
2

)
+

(
m
2

)(
n
2

)
.

(3) The set of polynomials ℜ ⊂ K⟨W⟩ is linearly independent.
(4)

I2 ⊕ (A ◦ B)2 = (K⟨W⟩)2.

dimK I2 + dimK(A ◦ B)2 = m2n2 = dimK(K⟨W⟩)2

dimK(Spanℜ) + dimK(A ◦ B)2 = m2n2

Hence (ℜ)2 = I2, and ℜ generates the ideal of relations of
the algebra A ◦ B.



13. Segre maps of Yang-Baxter algebras
Problem 2. Introduce noncommutative analogues of Segre maps
in the class of Yang-Baxter algebras of finite solutions. We have to
find a solution (Z, rZ), with YB-algebra AZ and a
homomorphism of graded algebras:

S : AZ −→ A ⊗ B,

s.t. ImS = A ◦ B and to find ker S.
Definition-Notation. Let Z = {z11, z12, · · · , zmn} be a set of
order mn, disjoint with X and Y. Define a map

r : Z × Z −→ Z × Z

induced canonically from the solution (X ◦ Y, rX◦Y):

r(zjb, zia) = (zi′a′ , zj′b′) iff
rX◦Y(xj ◦ yb, xi ◦ ya) = (xi′ ◦ ya′ , xj′ ◦ yb′).

(Z, r) is a solution of YBE isomorphic to (X ◦ Y, rX◦Y) (and to
the Cartesian product (X × Y, rX×Y)).
Fix the deg-lex order on the free monoid ⟨Z⟩ induced by the
enumeration

Z = {z11 < z12 < · · · < zmn}.



14. Segre maps of Yang-Baxter algebras

Lemma. In notation as above. Let (X, r1) and (Y, r2) be
solutions on the finite disjoint sets X = {x1, · · · , xm}, and
Y = {y1, · · · , yn}, and let A = A(K, X, r1), and B = A(K, Y, r2)
be the corresponding YB algebras. Let (Z, r) be the solution of
order mn defined in Def-Notation, and let AZ = A(K, Z, r) be its
YB algebra. Then the assignment

z11 7→ x1 ⊗ y1, z12 7→ x1 ⊗ y2, · · · , zmn 7→ xm ⊗ yn

extents to an algebra homomorphism

sm,n : AZ −→ A ⊗K B.

Definition. We call the map sm,n : AZ −→ A ⊗K B
the (m, n)-Segre map.



15. Assumptions and notations as above

(X, r1) and (Y, r2) are disjoint solutions

X = {x1, · · · , xm}, Y = {y1, · · · , yn},

A and B - the corresponding Yang-Baxter algebras. (Z, r) is the
solution on the set

Z = {z11, · · · , zmn}

isom. to (X ◦ Y, rX◦Y) and to the Cartesian product
(X × Y, rX×Y). AZ = A(K, Z, r) is its YB- algebra.
sm,n : AZ −→ A ⊗k B is the Segre map extending the assignment

z11 7→ x1 ◦ y1, z12 7→ x1 ◦ y2, · · · , zmn 7→ xm ◦ yn.



Theorem B.

(1) The image of the Segre map sm,n is the Segre product A ◦ B.
Moreover, sm,n : AZ −→ A ◦ B is a homomorphism of graded
algebras.

(2) The kernel K = ker(sm,n) of the Segre map is generated by the
set ℜs of (m

2)(
n
2) linearly independent quadratic binomials

described below

ℜs = {hij,ba = zibzja − zia′zjb′ , 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n |
r1(xixj) > xixj, and r2(ybya) = ya′yb′ with b > a′}.

Sketch of proof. (i) ℜs consists of nonzero elements of AZ.
(ii) sm,n(ℜs) = ℜb therefore ℜs ⊂ K = ker(sm,n), moreover ℜs is
linearly indept.
(iii) ℜs is a minimal set of generators of the kernel K.



17. Corollary.

Let A = A(K, X, r1), and B = A(K, Y, r2), be the Yang-Baxter
algebras of the finite solutions (X, r1) and (Y, r2). Then the
Segre product A ◦ B is a left and a right Noetherian algebra.
Moreover, A ◦ B has polynomial growth. Moreover, A ◦ B is
Koszul.



18. Open Question

(1) Let A = A(K, X, r1), and B = A(K, Y, r2), be the
Yang-Baxter algebras of the finite solutions (X, r1) and
(Y, r2). Is it true that the Segre product A ◦ B is a domain?

(2) Let A = A(K, X, r1), and B = A(K, Y, r2), be the YB
algebras of the finite square-free solutions (X, r1) and (Y, r2).
Is it true that the Segre product A ◦ B is a domain?

(3) Let A and B be binomial skew polynomial algebras. Is it
true that the Segre product A ◦ B is a domain?

(2) and (3) are equivalent. We expect that due to the good
algebraic and combinatorial properties of A and B, the answer
is affirmative. In cases (2) and (3) the Segre product A ◦ B is a
PBW algebra whose quadratic relations are explicitly given.
Observe that A and B are Noetherian domains, and A ◦ B is a
subalgebra of the tensor product A ⊗ B. However, it is shown
by Rowen that the tensor product D1 ⊗F D2 of two division
algebras over an algebraically closed field contained in their
centers may not be a domain.



19. Segre products and Segre maps for the YB algebras of
square-free solutions

Among all Yang-Baxter algebras of finite solutions A = A(X, r)
the only PBW algebras A = A(K, X, r) are those corresponding
to square-free solutions.

Theorem
(GI 2022) If (X, r) is a finite solution of YBE then its Yang-Baxter
algebra A = A(K, X, r) is a PBW algebra with respect to a proper
enumeration X = {x1, x2, · · · , xn} iff (X, r) is a square-free solution.



20. From now on (X, r1) and (Y, r2) are disjoint square-free
solutions,

X = {x1, · · · , xm}, and Y = {y1, · · · , yn}

are enumerated so that the Yang-Baxter algebras
A = A(K, X, r1), and B = A(K, Y, r2) are binomial skew
polynomial rings with respect to these enumerations.



Theorem C.
The Segre product A ◦ B satisfies the following conditions.
(1) A ◦ B is a PBW algebra with a set of mn PBW generators

W = X ◦ Y = {w11 = x1 ◦ y1, w12 = x1 ◦ x2, · · · ,
· · · , w1n = x1 ◦ yn, · · · , wmn = xm ◦ xn}

ordered lexicographically, and a standard finite presentation

A ◦ B ≃ K⟨w11, · · · , wmn⟩/(ℜ),

where the set of relations ℜ is a Gröbner basis of the ideal
I = (ℜ) and consists of (mn

2 ) + (m
2)(

n
2) square-free quadratic

polynomials described in Theorem A.
(2) A ◦ B is a Koszul algebra.
(3) A ◦ B is left and right Noetherian.
(4) The algebra A ◦ B has polynomial growth and infinite global

dimension.



22. Segre morphisms for YB algebras of square-free
solutions

Theorem D below shows that our (noncommutative) analogue
of Segre morphisms for Yang-Baxter algebras of finite solutions
(the general case) can be defined also for the subclass of
Yang-Baxter algebras related to square-free solutions. This is in
contrast with our recent results on Veronese subalgebras which
imply that the noncommutative analogue of Veronese
morphisms for the class of Yang-Baxter algebras related to
(arbitrary) finite solutions of YBE, introduced in [GI22] can not
be restricted to the subclass of YB algebras of square-free
solutions.
Hypothesis of Theorem D. Assumptions and notation as
above. Suppose (X, r1) and (Y, r2) are disjoint square-free
solutions, X = {x1, · · · , xm}, Y = {y1, · · · , yn} enumerated so
that the Yang-Baxter algebras A = A(K, X, r1), and
B = A(K, Y, r2) are binomial skew polynomial rings w.r.t. these
enumerations. Let (Z, rZ) be the square-free solution on the set
Z = {z11, · · · , zmn}, isomorphic the Cartesian product of
solutions (X ◦ Y, r), and let A = A(K, Z, rZ) be its YB algebra.
(We know that A is also a binomial skew-polynomial ring).



Theorem D.
Let (Z, rZ) be the square-free solution on the set Z = {z11, · · · , zmn},
isomorphic the Cartesian product of solutions (X ◦ Y, r), and let
A = A(K, Z, rZ) be its YB algebra. (We know that A is also a
binomial skew-polynomial ring). Let

sm,n : A =−→ A ⊗k B

be the Segre map extending the assignment
z11 7→ x1 ◦ y1, z12 7→ x1 ◦ y2, · · · , zmn 7→ xm ◦ yn.
(1) The image of the Segre map sm,n is the Segre product A ◦ B.
(2) The kernel K = ker(sm,n) is generated by the set of (m

2)(
n
2)

linearly independent quadratic binomials listed below:

hij,ba = zibzja − zia′zjb′ , 1 ≤ i < j ≤ m, 1 ≤ a < b ≤ n
where r2(ybya) = ya′yb′ with b > a′, a′ < b′.



24. An Example of A ◦ B

A = A(K, X, r1) = K⟨x1, x2, x3⟩/(x3x2 − x1x3, x3x1 − x2x3, x2x1 − x1x2);
B = A(K, Y, r2) = K⟨y1, y2⟩/(y2

2 − y2
1).

A is a binomial skew-polynomial ring, its rel. form a Gröbner
basis of the ideal they generate. The relations of B do not form a
Gröbner basis of the ideal J = (y2

2 − y2
1). The reduced Gr. basis

of J is G = {y2
2 − y2

1, y2y1y1 − y1y1y2}.
Let A ◦ B be the Segre product of A and B, and let (X ◦ Y, rX◦Y)
be the solution isomorphic to the Cartesian product of
solutions (X × Y, r).
A ◦ B is a quadratic algebra with a set of 6 one-generators

W = { w11 = x1 ◦ y1, w12 = x1 ◦ y2, w21 = x2 ◦ y1,
w22 = x2 ◦ y2, w31 = x3 ◦ y1, w32 = x3 ◦ y2}

and 18 defining quadratic relations.



A ◦ B ≃ K⟨w11, w12, w21, w22, w31, w32⟩/(ℜ)
ℜ = ℜa ∪ ℜb is a disjoint union of quadratic relations, where
ℜa are the relations of the YB algebra AX◦Y with |ℜa| = 15,
ℜa = ℜa1 ∪ ℜa2,

ℜa1 = { f32,22 = w32w22 − w11w31, f32,11 = w31w21 − w12w32,
f32,21 = w32w21 − w12w31, f32,12 = w31w22 − w11w32,
f31,22 = w32w12 − w21w31, f31,11 = w31w11 − w22w32,
f31,21 = w32w11 − w22w31, f31,12 = w31w12 − w21w32,
f21,22 = w22w12 − w11w21, f21,11 = w21w11 − w12w22,
f21,21 = w22w11 − w12w21, f21,12 = w21w12 − w11w22 }.

ℜa2 = { f33,22 = w32w32 − w31w31, f22,22 = w22w22 − w21w21,
f11,22 = w12w12 − w11w11 }.

ℜb = { g23,22 = w22w32 − w21w31, g13,22 = w12w32 − w11w31,
g12,22 = w12w22 − w11w21}.



Let (Z, rZ) be the solution isomorphic to the Cartesian
product (X ◦ Y, rX◦Y), where

Z = {z11, z12, z21, z22, z31, z32}. The YB algebra AZ = A(K, Z, rZ)
has a finite presentation

AZ = K⟨z11, z12, z21, z22, z31, z32⟩/(ℜ(AZ)),

ℜ(AZ) = { f32,22 = z32z22 − z11z31, f32,11 = z31z21 − z12z32,
f32,21 = z32z21 − z12z31, f32,12 = z31z22 − z11z32,
f31,22 = z32z12 − z21z31, f31,11 = z31z11 − z22z32,
f31,21 = z32z11 − z22z31, f31,12 = z31z12 − z21z32,
f21,22 = z22z12 − z11z21, f21,11 = z21z11 − z12z22,
f21,21 = z22z11 − z12z21, f21,12 = z21z12 − z11z22,
f33,22 = z32z32 − z31z31, f22,22 = z22z22 − z21z21,
f11,22 = z12z12 − z11z11 }.

(Z, rZ) is not a square-free solution, and therefore, the defining
relations ℜ(AZ) do not form a Gröbner basis.



The Segre map s3,2 : AZ −→ A ⊗ B has image A ◦ B.
The kernel ker(s3,2) is the ideal of AZ generated by the
following three polynomials

t23,22 = z22z32 − z21z31,
t13,22 = z12z32 − z11z31,
t12,22 = z12z22 − z11z21.


