Segre products and Segre morphisms in a class of Yang–Baxter algebras Tatiana Gateva-Ivanova

American University in Bulgaria & and IMI BAS, Sofia

"Groups, rings and the Yang-Baxter equation 2023" June 19-23, 2023 Blankenberge, Belgium This talk is based on my paper Gateva-Ivanova, Tatiana. "Segre products and Segre morphisms in a class of Yang–Baxter algebras." Letters in Mathematical Physics 113.2 (2023): 34.

Thanks. My participation in the conference and my talk are partially supported by Grant KP-06 N 32/1, 07.12.2019 of the Bulgarian National Science Fund.

1. "A solution of YBE" = "a solution" = "a nondegenerate involutive set-theoretic solution (X, r) of YBE"

- *The Yang-Baxter algebras* $A_X = A(K, X, r)$ related to solutions (X, r), of finite order |X| = n over a field *K* will play a central role in the talk.
- It was proven in [GIVB 98] that the quadratic algebra A_X of every finite solution (X, r) of YBE has remarkable algebraic, homological and combinatorial properties. In general, the algebra A_X is noncommutative and in most cases it is not even a PBW algebra, but it preserves various good properties of the commutative polynomial ring $K[x_1, \dots, x_n]$:
- A_X has finite global dimension and polynomial growth,
- A_X is Cohen-Macaulay, Koszul, and a Noetherian domain.
- In the special case when (X, r) is a square-free solution A_X is a PBW Artin-Schelter regular algebra.

- The study of non-commutative algebras defined by quadratic relations as examples of *quantum non-commutative spaces* has received considerable impetus from the seminal work of Faddeev, Reshetikhin and Takhtajan,1989, and from Manin's Programme for non-commutative geometry, 1991.
- Following Manin (Quantum Groups, 1988) we call the quadratic algebras related to set-theoretic solutions of the Yang-Baxter equation *Yang-Baxter algebras* (GI, 2004).
- The YB algebras we study are important for both noncommutative algebra and non-commutative algebraic geometry, as they provide a rich source of examples of interesting associative algebras and non-commutative spaces some of which are Artin-Schelter regular algebras.

Main Problem

Let (X, r_X) and (Y, r_Y) be finite solutions of YBE whose Yang-Baxter algebras are $A = \mathcal{A}(K, X, r_X)$ and $B = \mathcal{A}(K, Y, r_Y)$, respectively.

- (1) Find a presentation of the Segre product $A \circ B$ in terms of one-generators and linearly independent quadratic relations.
- (2) Introduce analogues of Segre maps for the class of Yang-Baxter algebras of finite solutions of YBE.
- (3) Study separately Segre products and Segre maps in the special case when (X, r_X) and (Y, r_Y) are square-free solutions.

Note that only in this case the algebras *A* and *B* are PBW (binomial skew polynomial rings).

Our approach is entirely algebraic and combinatorial. The problem is solved completely.

4. Segre products of graded algebras

Definition. Let

$$A = A_0 \oplus A_1 \oplus A_2 \oplus \cdots$$
 and $B = B_0 \oplus B_1 \oplus B_2 \oplus \cdots$

be N_0 - graded algebras over a field K, where $K = A_0 = B_0$ and N_0 is the set of non-negative integers. The *Segre product* of A and B is the N_0 -graded algebra

$$A \circ B := \bigoplus_{i \ge 0} (A \circ B)_i$$
 with $(A \circ B)_i = A_i \otimes_K B_i$.

 $A \circ B$ is a subalgebra of $A \otimes B$.

The embedding is not a graded algebra morphism, as it doubles grading.

Skip*

If *A* and *B* are locally finite then the Hilbert function of $A \circ B$ satisfies

$$h_{A \circ B}(t) = \dim(A \circ B)_t = \dim(A_t \otimes B_t) = \dim(A_t) \cdot \dim(B_t) = h_A(t) \cdot h_B(t).$$

Moreover, $A \circ B$ inherits various properties from the two algebras A and B. In particular, if both algebras are one-generated, quadratic, and Koszul, then the algebra $A \circ B$ is also one-generated, quadratic, and Koszul. The quadratic relations of $A \circ B$ (the general case)*

Suppose that *A* and *B* are quadratic algebras generated in degree one by A_1 and B_1 , resp., written as:

$A = T(A_1) / (\Re_A)$	with $\Re_A \subset A_1 \otimes A_1$,
$B = T(B_1)/(\Re_B)$	with $\Re_B \subset B_1 \otimes B_1$,

where T(-) is the tensor algebra and (\Re_A) , (\Re_B) are the ideals of relations of *A* and *B*.

Then $A \circ B$ is also a quadratic algebra generated in degree one by $A_1 \otimes B_1$ and presented as

 $A \circ B = T(A_1 \otimes B_1) / (s^{23}(\Re_A \otimes B_1 \otimes B_1 + A_1 \otimes A_1 \otimes \Re_B)),$

where

$$s^{23}(a_1 \otimes a_2 \otimes b_1 \otimes b_2) = a_1 \otimes b_1 \otimes a_2 \otimes b_2.$$

5. The Yang-Baxter algebras

Let (X, r_1) be a solutions of YBE, |X| = m. Fix an enumeration $X = \{x_1, \dots, x_m\}$ and extend it to deg-lex order on the free monoid $\langle X \rangle$. The *Yang-Baxter algebra* $A = \mathcal{A}(K, X, r_1)$ is defined as

$$A = K\langle X \rangle / (\Re_1), \text{ where } \Re_1 \text{ is a set of } \binom{m}{2} \text{ binomial relations :} \\ \Re_1 = \{x_j x_i - x_{i'} x_{j'} \mid r_1(x_j x_i) = x_{i'} x_{j'}, \text{ and } x_j x_i > x_{i'} x_{j'} \}.$$

A is a f.p. quadratic algebra naturally graded by length: $A = A_0 \oplus A_1 \oplus A_2 \oplus, A_0 = K, A_1 = \text{Span}X, \cdots$. Let (Y, r_2) be a solution, with $Y = \{y_1, \cdots, y_n\}$. Similarly, we extend the enumeration to deg-lex oreder on $\langle Y \rangle$. The YB-algebra $B = \mathcal{A}(K, Y, r_2)$ is defined as

$$B = K\langle Y \rangle / (\Re_2), \text{ where } \Re_2 \text{ is a set of } \binom{n}{2} \text{ binomial relations :} \\ \Re_2 = \{y_b y_a - y_{a'} y_{b'} \mid r_2(y_b y_a) = y_{a'} y_{b'} \text{ and } y_b y_a > y_{a'} y_{b'} \}.$$

Similarly, $B = B_0 \oplus B_1 \oplus A_2 \oplus$, $B_0 = K$, $B_1 = \text{Span}Y$, \cdots is a quadratic graded algebra.

Find a finite presentation of the Segre product $A \circ B$ in terms of one-generators and linearly independent quadratic relations. Recall that

$$A \circ B := \bigoplus_{i \ge 0} (A \circ B)_i$$
 with $(A \circ B)_i = A_i \otimes_K B_i$.

Skip*

Remark

In general, \Re_1 and \Re_2 are not necessarily relations of binomial skew polynomial algebras.

One has

dim
$$A_2 = \binom{m+1}{2}$$
, dim $B_2 = \binom{n+1}{2}$,

$$\dim(A \circ B)_2 = \binom{m+1}{2} \binom{n+1}{2}.$$

7. The Cartesian product of braided sets

Definition. Let (X, r_1) and (Y, r_2) be disjoint braided sets (we do not assume involutiveness, nor nondegeneracy). Consider the Cartesian product of sets $X \times Y$ and the bijective map

$$\mathfrak{r}: (X \times Y) \times (X \times Y) \longrightarrow (X \times Y) \times (X \times Y) \text{ defined as}$$
$$\mathfrak{r}:= s_{23} \circ (r_1 \times r_2) \circ s_{23},$$

where s_{23} is the flip of the second and the third component. In other words,

$$\mathfrak{r}((x_j, y_b), (x_i, y_a)) := (({}^{x_j} x_i, {}^{y_b} y_a), (x_j^{x_i}, y_b^{y_a})),$$

for all $i, j \in \{1, \dots, m\}$ and all $a, b \in \{1, \dots, n\}$. Then the quadratic set $(X \times Y, \mathfrak{r})$ is a braided set of order *mn*, and we shall refer to it as

the Cartesian product of the braided sets (X, r_1) and (Y, r_2) .

8. The Cartesian product of braided sets, $(X \times Y, \mathfrak{r})$ satisfies the following conditions.

- (*X* × *Y*, *v*) is nondegenerate *iff* (*X*, *r*₁) and (*Y*, *r*₂) are nondegenerate.
- $(X \times Y, \mathfrak{r})$ is involutive *iff* (X, r_1) and (Y, r_2) are involutive.
- $(X \times Y, \mathfrak{r})$ is a solution of YBE *iff* (X, r_1) and (Y, r_2) are solutions of YBE.
- (*X* × *Y*, *v*) is a square-free solution *iff* (*X*, *r*₁) and (*Y*, *r*₂) are square-free solutions.

9. Let (X, r_1) and (Y, r_2) be solutions on the disjoint sets $X = \{x_1, \dots, x_m\}$, and $Y = \{y_1, \dots, y_n\}$.

 $A \circ B$ is the Segre product of the YB algebras $A = \mathcal{A}(K, X, r_1)$ and $B = \mathcal{A}(K, Y, r_2)$. To simplify notation we write " $x \circ y$ " instead of " $x \otimes y$ ", $x \in X, y \in Y$, or " $u \circ v$ " instead of " $u \otimes v$ ", for $u \in A_d, v \in B_d, d \ge 2$. Let

$$X \circ Y = \{x_i \circ y_a \mid 1 \le i \le m, \ 1 \le a \le n\}.$$

Proposition-Notation. There is a natural structure of a solution $(X \circ Y, \mathbf{r}_{X \circ Y})$ given by

 $\mathbf{r}_{X \circ Y}((x_j \circ y_b), (x_i \circ y_a)) := (((x_j x_i) \circ (y_b y_a)), ((x_j x_i) \circ (y_b y_a))),$

 $1 \le i, j \le m, 1 \le a, b \le n$. This solution is isomorphic to the Cartesian product of solutions $(X \times Y, \mathfrak{r})$. In particular, $(X \circ Y, r_{X \circ Y})$ has cardinality mn and $\binom{mn}{2}$ nontrivial $r_{X \circ Y}$ -orbits. $(X \circ Y, \mathbf{r})$ has exactly *mn* fixed points, namely:

$$\mathcal{F} = \{ (x_p \circ y_a)(x_q \circ y_b) \mid r_1(x_p x_q) = x_p x_q, \text{ and } r_2(y_a y_b) = y_a y_b, \\ \text{where } p, q \in \{1, \cdots, m\}, a, b \in \{1, \cdots, n\} \}.$$

In this case $x_p x_q \in \mathcal{N}(A)_2$ and $y_a y_b \in \mathcal{N}(B)_2$.

Skip*

Proposition. The YB algebra $\mathfrak{A} = \mathfrak{A}_{X \circ Y} = \mathcal{A}(K, X \circ Y, r)$ is generated by the set $X \circ Y$ and has $\binom{mn}{2}$ quadratic defining relations described in the two lists below.

(1)
$$f_{ji,ba} = (x_j \circ y_b)(x_i \circ y_a) - (^{x_j}x_i \circ ^{y_b}y_a)(x_j^{x_i} \circ y_b^{y_a}),$$

for all $1 \le i,j \le m$ s.t. $x_j > ^{x_j}x_i,$
and all $1 \le a,b \le n.$

The leading monomials are $LM(f_{ji,ba}) = (x_j \circ y_b)(x_i \circ y_a)$.

(2)
$$\begin{aligned} f_{ij,ba} &= (x_i \circ y_b)(x_j \circ y_a) - (x_i \circ {}^{y_b}y_a)(x_j \circ y_b^{y_a}), \\ \text{for all } 1 \leq i,j \leq m \text{ with } r_1(x_i x_j) = x_i x_j, \\ \text{and all } 1 \leq a,b \leq n, \text{ s. t. } y_b > {}^{y_b}y_a. \end{aligned}$$

The leading monomials are $LM(f_{ij,ba}) = (x_i \circ y_b)(x_j \circ y_a)$.

10 Corollary

Let (X, r_1) and (Y, r_2) be finite solutions and let $A = \mathcal{A}(K, X, r_1)$ and $B = \mathcal{A}(K, Y, r_2)$ be their Yang-Baxter algebras. Then the Segre product, $A \circ B$ is a one-generated quadratic and Koszul algebra.

This is a consequence from the results of GIVB (1998) and a proposition in the book "Quadratic Algebras" PoPo

We also prove that $A \circ B$ is a left and a right Noetherian algebra with polynomial growth.

11. Theorem A

Suppose (X, r_1) and (Y, r_2) are finite solutions, $X = \{x_1 \cdots, x_m\}, Y = \{y_1 \cdots, y_n\}$ are disjoint sets $A = \mathcal{A}(K, X, r_1)$ and $B = \mathcal{A}(K, Y, r_2)$. Let $A \circ B$ be the Segre product of A and B, and let $(X \circ Y, r_{X \circ Y})$ be the solution of YBE defined above.

Theorem A.

The algebra $A \circ B$ *has a set of mn one-generators* $W = X \circ Y$ *ordered lexicographically:*

$$W = \{w_{11} = x_1 \circ y_1 < w_{12} = x_1 \circ y_2 < \cdots < w_{1n} = x_1 \circ y_n \\ < w_{21} = x_2 \circ y_1 < \cdots < w_{mn} = x_m \circ y_n\},\$$

and a set of $\binom{mn}{2} + \binom{m}{2}\binom{n}{2}$ linearly independent quadratic relations \Re described below.

12. $\Re = \Re_a \cup \Re_b$ is a disjoint union.

 \Re_a is the set of defining relations of the YB-algebra

 $\mathfrak{A} = \mathcal{A}(K, X \circ Y, \mathbf{r}_{X \circ Y}) \text{ of the Cartesian prod. } (X \circ Y, \mathbf{r}_{X \circ Y}).$ $\mathfrak{R}_a = \mathfrak{R}_{a1} \cup \mathfrak{R}_{a2} \text{ is a disjoint union of order } |\mathfrak{R}_a| = \binom{mn}{2}.$

$$\begin{aligned} \Re_{a1} &= \{f_{ji,ba} = (x_{j} \circ y_{b})(x_{i} \circ y_{a}) - (x_{i'} \circ y_{a'})(x_{j'} \circ y_{b'}), \\ &1 \leq i,j \leq m, 1 \leq a,b \leq n, \text{ where} \\ &r_{1}(x_{j}x_{i}) = x_{i'}x_{j'}, \text{ with } j > i', \text{ and } r_{2}(y_{b}y_{a}) = y_{a'}y_{b'}\} \\ &LM(f_{ji,ba}) = (x_{j} \circ y_{b})(x_{i} \circ y_{a}). \ |\Re_{a1}| = \binom{m}{2}n^{2}. \\ &\Re_{a2} = \{f_{ij,ba} = (x_{i} \circ y_{b})(x_{j} \circ y_{a}) - (x_{i} \circ y_{a'})(x_{j} \circ y_{b'}), \\ &1 \leq i,j \leq m, \ 1 \leq a,b \leq n, \text{ where} \\ &x_{i}x_{j} = r_{1}(x_{i}x_{j}) \text{ and } r_{2}(y_{b}y_{a}) = y_{a'}y_{b'}, \text{ with } b > a'\}. \\ &LM(f_{ij,ba}) = (x_{i} \circ y_{b})(x_{j} \circ y_{a}). \ |\Re_{a2}| = m\binom{n}{2}. \end{aligned}$$

 \Re_b consists of $\binom{m}{2}\binom{n}{2}$ relations:

$$\begin{aligned} \Re_b &= \{ g_{ij,ba} = (x_i \circ y_b)(x_j \circ y_a) - (x_i \circ y_{a'})(x_j \circ y_{b'}), \\ &1 \leq i, j \leq m, 1 \leq a, b \leq n, \text{ where} \\ &r_1(x_i x_j) > x_i x_j, \ r_2(y_b y_a) = y_{a'} y_{b'} \text{ and } b > a' \}. \\ &LM(g_{ij,ba}) = (x_i \circ y_b)(x_j \circ y_a). \end{aligned}$$

Skip* The proof is in four steps.

(1) $\Re = \Re_a \cup \Re_b$ is contained in the ideal of relations $I = (\Re(A \circ B)).$

(2) We count

$$|\Re_a| = \binom{mn}{2}; \ |\Re_b| = \binom{m}{2}\binom{n}{2}; \ |\Re| = \binom{mn}{2} + \binom{m}{2}\binom{n}{2}.$$

(3) The set of polynomials ℜ ⊂ K⟨W⟩ is linearly independent.
(4)

$$I_2 \oplus (A \circ B)_2 = (K\langle W \rangle)_2.$$

$$\dim_K I_2 + \dim_K (A \circ B)_2 = m^2 n^2 = \dim_K (K\langle W \rangle)_2$$

$$\dim_K (Span \Re) + \dim_K (A \circ B)_2 = m^2 n^2$$

Hence $(\Re)_2 = I_2$, and \Re generates the ideal of relations of the algebra $A \circ B$.

13. Segre maps of Yang-Baxter algebras

Problem 2. Introduce noncommutative analogues of *Segre maps in the class of Yang-Baxter algebras of finite solutions*. We have to find a solution (Z, r_Z) , with YB-algebra \mathfrak{A}_Z and a homomorphism of graded algebras:

$$S:\mathfrak{A}_Z\longrightarrow A\otimes B,$$

s.t. $ImS = A \circ B$ and to find ker *S*. **Definition-Notation.** Let $Z = \{z_{11}, z_{12}, \dots, z_{mn}\}$ be a set of order *mn*, disjoint with *X* and *Y*. Define a map

$$\mathfrak{r}: Z \times Z \longrightarrow Z \times Z$$

induced canonically from the solution $(X \circ Y, r_{X \circ Y})$:

$$\mathfrak{r}(z_{jb}, z_{ia}) = (z_{i'a'}, z_{j'b'}) iff r_{X \circ Y}(x_j \circ y_b, x_i \circ y_a) = (x_{i'} \circ y_{a'}, x_{j'} \circ y_{b'}).$$

 (Z, \mathfrak{r}) is a solution of YBE isomorphic to $(X \circ Y, r_{X \circ Y})$ (and to the Cartesian product $(X \times Y, r_{X \times Y})$). Fix the deg-lex order on the free monoid $\langle Z \rangle$ induced by the enumeration

14. Segre maps of Yang-Baxter algebras

Lemma. In notation as above. Let (X, r_1) and (Y, r_2) be solutions on the finite disjoint sets $X = \{x_1, \dots, x_m\}$, and $Y = \{y_1, \dots, y_n\}$, and let $A = \mathcal{A}(K, X, r_1)$, and $B = \mathcal{A}(K, Y, r_2)$ be the corresponding YB algebras. Let (Z, \mathfrak{r}) be the solution of order *mn* defined in Def-Notation, and let $\mathfrak{A}_Z = \mathcal{A}(K, Z, \mathfrak{r})$ be its YB algebra. Then the assignment

$$z_{11} \mapsto x_1 \otimes y_1, z_{12} \mapsto x_1 \otimes y_2, \cdots, z_{mn} \mapsto x_m \otimes y_n$$

extents to an algebra homomorphism

$$s_{m,n}:\mathfrak{A}_Z\longrightarrow A\otimes_K B.$$

Definition. We call the map $s_{m,n} : \mathfrak{A}_Z \longrightarrow A \otimes_K B$ *the* (m, n)*-Segre map.*

15. Assumptions and notations as above

 (X, r_1) and (Y, r_2) are disjoint solutions

$$X = \{x_1, \cdots, x_m\}, \quad Y = \{y_1, \cdots, y_n\},\$$

A and *B* - the corresponding Yang-Baxter algebras. (Z, \mathfrak{r}) is the solution on the set

$$Z=\{z_{11},\cdots,z_{mn}\}$$

isom. to $(X \circ Y, r_{X \circ Y})$ and to the Cartesian product $(X \times Y, r_{X \times Y})$. $\mathfrak{A}_Z = \mathcal{A}(K, Z, \mathfrak{r})$ is its YB- algebra. $s_{m,n} : \mathfrak{A}_Z \longrightarrow A \otimes_{\mathbf{k}} B$ is the Segre map extending the assignment

$$z_{11} \mapsto x_1 \circ y_1, z_{12} \mapsto x_1 \circ y_2, \cdots, z_{mn} \mapsto x_m \circ y_n.$$

Theorem B.

- The image of the Segre map s_{m,n} is the Segre product A ∘ B. Moreover, s_{m,n} : 𝔄_Z → A ∘ B is a homomorphism of graded algebras.
- (2) The kernel $\Re = \ker(s_{m,n})$ of the Segre map is generated by the set \Re_s of $\binom{m}{2}\binom{n}{2}$ linearly independent quadratic binomials described below

$$\begin{array}{ll} \Re_{s} = & \{h_{ij,ba} = z_{ib}z_{ja} - z_{ia'}z_{jb'}, \ 1 \leq i,j \leq m, 1 \leq a,b \leq n \mid \\ & r_{1}(x_{i}x_{j}) > x_{i}x_{j}, \ and \ r_{2}(y_{b}y_{a}) = y_{a'}y_{b'} \ with \ b > a' \}. \end{array}$$

Sketch of proof. (i) \Re_s consists of nonzero elements of \mathfrak{A}_Z . (ii) $s_{m,n}(\Re_s) = \Re_b$ therefore $\Re_s \subset \mathfrak{K} = \ker(s_{m,n})$, moreover \Re_s is linearly indept.

(iii) \Re_s is a minimal set of generators of the kernel \Re .

17. Corollary.

Let $A = \mathcal{A}(K, X, r_1)$, and $B = \mathcal{A}(K, Y, r_2)$, be the Yang-Baxter algebras of the finite solutions (X, r_1) and (Y, r_2) . Then the Segre product $A \circ B$ is a left and a right Noetherian algebra. Moreover, $A \circ B$ has polynomial growth. Moreover, $A \circ B$ is Koszul.

18. Open Question

- (1) Let $A = \mathcal{A}(K, X, r_1)$, and $B = \mathcal{A}(K, Y, r_2)$, be the Yang-Baxter algebras of the finite solutions (X, r_1) and (Y, r_2) . Is it true that the Segre product $A \circ B$ is a domain?
- (2) Let $A = \mathcal{A}(K, X, r_1)$, and $B = \mathcal{A}(K, Y, r_2)$, be the YB algebras of the finite *square-free solutions* (X, r_1) and (Y, r_2) . Is it true that the Segre product $A \circ B$ is a domain?
- (3) Let *A* and *B* be binomial skew polynomial algebras. Is it true that the Segre product $A \circ B$ is a domain?

(2) and (3) are equivalent. We expect that due to the good algebraic and combinatorial properties of *A* and *B*, the answer is affirmative. In cases (2) and (3) the Segre product $A \circ B$ is a PBW algebra whose quadratic relations are explicitly given. Observe that *A* and *B* are Noetherian domains, and $A \circ B$ is a subalgebra of the tensor product $A \otimes B$. However, it is shown by Rowen that the tensor product $D_1 \otimes_F D_2$ of two division algebras over an algebraically closed field contained in their centers may not be a domain.

19. Segre products and Segre maps for the YB algebras of square-free solutions

Among all Yang-Baxter algebras of finite solutions $A = \mathcal{A}(X, r)$ the only PBW algebras $A = \mathcal{A}(K, X, r)$ are those corresponding to square-free solutions.

Theorem

(GI 2022) If (X, r) is a finite solution of YBE then its Yang-Baxter algebra $\mathcal{A} = \mathcal{A}(K, X, r)$ is a PBW algebra with respect to a proper enumeration $X = \{x_1, x_2, \dots, x_n\}$ iff (X, r) is a square-free solution. **20.** From now on (X, r_1) and (Y, r_2) are disjoint square-free solutions,

$$X = \{x_1, \cdots, x_m\}, \text{ and } Y = \{y_1, \cdots, y_n\}$$

are enumerated so that the Yang-Baxter algebras $A = \mathcal{A}(K, X, r_1)$, and $B = \mathcal{A}(K, Y, r_2)$ are *binomial skew polynomial rings* with respect to these enumerations.

Theorem C.

The Segre product $A \circ B$ satisfies the following conditions. (1) $A \circ B$ is a PBW algebra with a set of mn PBW generators

$$W = X \circ Y = \{w_{11} = x_1 \circ y_1, w_{12} = x_1 \circ x_2, \cdots, \\ \cdots, w_{1n} = x_1 \circ y_n, \cdots, w_{mn} = x_m \circ x_n\}$$

ordered lexicographically, and a standard finite presentation

$$A \circ B \simeq K \langle w_{11}, \cdots, w_{mn} \rangle / (\Re),$$

where the set of relations \Re is a Gröbner basis of the ideal $I = (\Re)$ and consists of $\binom{mn}{2} + \binom{m}{2}\binom{n}{2}$ square-free quadratic polynomials described in Theorem A.

- (2) $A \circ B$ is a Koszul algebra.
- (3) $A \circ B$ is left and right Noetherian.
- (4) *The algebra A B has polynomial growth and infinite global dimension.*

22. Segre morphisms for YB algebras of square-free solutions

Theorem D below shows that our (noncommutative) analogue of Segre morphisms for Yang-Baxter algebras of finite solutions (the general case) can be defined also for the subclass of Yang-Baxter algebras related to square-free solutions. This is in contrast with our recent results on Veronese subalgebras which imply that the noncommutative analogue of Veronese morphisms for the class of Yang-Baxter algebras related to (arbitrary) finite solutions of YBE, introduced in [GI22] can not be restricted to the subclass of YB algebras of square-free solutions.

Hypothesis of Theorem D. Assumptions and notation as above. Suppose (X, r_1) and (Y, r_2) are disjoint square-free solutions, $X = \{x_1, \dots, x_m\}$, $Y = \{y_1, \dots, y_n\}$ enumerated so that the Yang-Baxter algebras $A = \mathcal{A}(K, X, r_1)$, and $B = \mathcal{A}(K, Y, r_2)$ are *binomial skew polynomial rings* w.r.t. these enumerations. Let (Z, r_Z) be *the square-free solution* on the set $Z = \{z_{11}, \dots, z_{mn}\}$, isomorphic the Cartesian product of

Theorem D.

Let (Z, r_Z) be the square-free solution on the set $Z = \{z_{11}, \dots, z_{mn}\}$, isomorphic the Cartesian product of solutions $(X \circ Y, \mathfrak{r})$, and let $\mathfrak{A} = \mathcal{A}(K, Z, r_Z)$ be its YB algebra. (We know that \mathfrak{A} is also a binomial skew-polynomial ring). Let

$$s_{m,n}:\mathfrak{A}=\longrightarrow A\otimes_k B$$

be the Segre map extending the assignment
z₁₁ → x₁ ∘ y₁, z₁₂ → x₁ ∘ y₂, · · · , z_{mn} → x_m ∘ y_n.
(1) The image of the Segre map s_{m,n} is the Segre product A ∘ B.
(2) The kernel ℜ = ker(s_{m,n}) is generated by the set of (^m₂)(ⁿ₂) linearly independent quadratic binomials listed below:

$$h_{ij,ba} = z_{ib}z_{ja} - z_{ia'}z_{jb'}, 1 \le i < j \le m, 1 \le a < b \le n$$

where $r_2(y_by_a) = y_{a'}y_{b'}$ with $b > a', a' < b'$.

24. An Example of $A \circ B$

$$A = \mathcal{A}(K, X, r_1) = K\langle x_1, x_2, x_3 \rangle / (x_3 x_2 - x_1 x_3, x_3 x_1 - x_2 x_3, x_2 x_1 - x_1 x_2) B = \mathcal{A}(K, Y, r_2) = K\langle y_1, y_2 \rangle / (y_2^2 - y_1^2).$$

A is a binomial skew-polynomial ring, its rel. form a Gröbner basis of the ideal they generate. The relations of *B* do not form a Gröbner basis of the ideal $J = (y_2^2 - y_1^2)$. The reduced Gr. basis of *J* is $G = \{y_2^2 - y_1^2, y_2y_1y_1 - y_1y_1y_2\}$. Let $A \circ B$ be the Segre product of *A* and *B*, and let $(X \circ Y, r_{X \circ Y})$ be the solution isomorphic to the Cartesian product of solutions $(X \times Y, \mathfrak{r})$.

 $A \circ B$ is a quadratic algebra with a set of **6** one-generators

$$W = \{ w_{11} = x_1 \circ y_1, w_{12} = x_1 \circ y_2, w_{21} = x_2 \circ y_1, \\ w_{22} = x_2 \circ y_2, w_{31} = x_3 \circ y_1, w_{32} = x_3 \circ y_2 \}$$

and 18 defining quadratic relations.

$A \circ B \simeq K \langle w_{11}, w_{12}, w_{21}, w_{22}, w_{31}, w_{32} \rangle / (\Re)$

 $\Re = \Re_a \cup \Re_b$ is a disjoint union of quadratic relations, where \Re_a are the relations of the YB algebra $\mathfrak{A}_{X \circ Y}$ with $|\Re_a| = 15$, $\Re_a = \Re_{a1} \cup \Re_{a2}$,

$$\begin{aligned} \Re_{a1} &= \left\{ \begin{array}{ll} f_{32,22} = w_{32}w_{22} - w_{11}w_{31}, & f_{32,11} = w_{31}w_{21} - w_{12}w_{32}, \\ f_{32,21} = w_{32}w_{21} - w_{12}w_{31}, & f_{32,12} = w_{31}w_{22} - w_{11}w_{32}, \\ f_{31,22} = w_{32}w_{12} - w_{21}w_{31}, & f_{31,11} = w_{31}w_{11} - w_{22}w_{32}, \\ f_{31,21} = w_{32}w_{11} - w_{22}w_{31}, & f_{31,12} = w_{31}w_{12} - w_{21}w_{32}, \\ f_{21,22} = w_{22}w_{12} - w_{11}w_{21}, & f_{21,11} = w_{21}w_{11} - w_{12}w_{22}, \\ f_{21,21} = w_{22}w_{11} - w_{12}w_{21}, & f_{21,12} = w_{21}w_{12} - w_{11}w_{22} \end{aligned} \end{aligned}$$

$$\Re_{a2} = \{ f_{33,22} = w_{32}w_{32} - w_{31}w_{31}, f_{22,22} = w_{22}w_{22} - w_{21}w_{21}, \\ f_{11,22} = w_{12}w_{12} - w_{11}w_{11} \}.$$

$$\Re_b = \{ g_{23,22} = w_{22}w_{32} - w_{21}w_{31}, g_{13,22} = w_{12}w_{32} - w_{11}w_{31}, g_{12,22} = w_{12}w_{22} - w_{11}w_{21} \}.$$

Let (Z, r_Z) be the solution isomorphic to the Cartesian product $(X \circ Y, r_{X \circ Y})$, where

 $Z = \{z_{11}, z_{12}, z_{21}, z_{22}, z_{31}, z_{32}\}$. The YB algebra $\mathfrak{A}_Z = \mathcal{A}(K, Z, r_Z)$ has a finite presentation

$$\mathfrak{A}_{Z} = K\langle z_{11}, z_{12}, z_{21}, z_{22}, z_{31}, z_{32} \rangle / (\Re(\mathfrak{A}_{Z})),$$

$$\begin{aligned} \Re(\mathfrak{A}_Z) &= \{ \begin{array}{ll} f_{32,22} = z_{32}z_{22} - z_{11}z_{31}, & f_{32,11} = z_{31}z_{21} - z_{12}z_{32}, \\ f_{32,21} = z_{32}z_{21} - z_{12}z_{31}, & f_{32,12} = z_{31}z_{22} - z_{11}z_{32}, \\ f_{31,22} = z_{32}z_{12} - z_{21}z_{31}, & f_{31,11} = z_{31}z_{11} - z_{22}z_{32}, \\ f_{31,21} = z_{32}z_{11} - z_{22}z_{31}, & f_{31,12} = z_{31}z_{12} - z_{21}z_{32}, \\ f_{21,22} = z_{22}z_{12} - z_{11}z_{21}, & f_{21,11} = z_{21}z_{11} - z_{12}z_{22}, \\ f_{21,21} = z_{22}z_{11} - z_{12}z_{21}, & f_{21,12} = z_{21}z_{12} - z_{11}z_{22}, \\ f_{33,22} = z_{32}z_{32} - z_{31}z_{31}, & f_{22,22} = z_{22}z_{22} - z_{21}z_{21}, \\ f_{11,22} = z_{12}z_{12} - z_{11}z_{11} \ \ \}. \end{aligned}$$

 (Z, r_Z) is not a square-free solution, and therefore, the defining relations $\Re(\mathfrak{A}_Z)$ do not form a Gröbner basis.

The Segre map $s_{3,2}: \mathfrak{A}_Z \longrightarrow A \otimes B$ has image $A \circ B$. The kernel ker $(s_{3,2})$ is the ideal of \mathfrak{A}_Z generated by the following three polynomials

> $t_{23,22} = z_{22}z_{32} - z_{21}z_{31},$ $t_{13,22} = z_{12}z_{32} - z_{11}z_{31},$ $t_{12,22} = z_{12}z_{22} - z_{11}z_{21}.$