Growth, dynamics and geometry of noncommutative algebras

Be'eri Greenfeld University of California San Diego

Groups, Rings and the Yang-Baxter Equation

Blankenberge, 2023

Growth of algebras

Be'eri Greenfeld (UCSD)

A - f.g. associative algebra over a field F V - f.d. generating subspace of $A = F + V + V^2 + \cdots$

$$\gamma_{A,V}(n) = \dim_F \left(F + V + \cdots + V^n\right)$$

is the **growth** of *A*. Independent of choice of *V* up to asymptotic equivalence $(f \sim g \text{ if } f \leq g(Cn) \text{ and } g \leq f(Dn) \text{ for } n \gg 1)$.

Growth of algebras

A - f.g. associative algebra over a field F V - f.d. generating subspace of $A = F + V + V^2 + \cdots$

$$\gamma_{A,V}(n) = \dim_F (F + V + \cdots + V^n)$$

is the **growth** of *A*. Independent of choice of *V* up to asymptotic equivalence $(f \sim g \text{ if } f \leq g(Cn) \text{ and } g \leq f(Dn) \text{ for } n \gg 1)$.

If γ_A(n) is polynomially bounded, then the Gel'fand-Kirillov dimension is:

$$\mathsf{GKdim}(A) = \overline{\mathsf{lim}}_{n \to \infty} \log_n \gamma_A(n)$$

e.g. for a commutative algebra, GKdim(A) = Kdim(A)

- If lim sup_{n→∞} ¹/_n log γ_A(n) > 0, A has exponential growth (e.g. a noncommutative free algebra)
- If γ_A is super-polynomial but subexponential, A has intermediate growth (e.g. U(Vir) ~ exp(√n))

The space of growth functions

Be'eri Greenfeld (UCSD)

June 2023

< ∃→

э

Monomial algebras and symbolic dynamics

 Σ - finite alphabet, $X \subseteq \Sigma^{\mathbb{N}}$ a closed, shift-invariant subspace (subshift). Complexity: $p_X(n) = \#$ {Subwords of X of length n}.

 $A_X = F\left< \Sigma \right> / \left< \mathsf{Monomials} \ \mathsf{which} \ \mathsf{do} \ \mathsf{not} \ \mathsf{factor} \ \mathsf{any} \ \mathsf{word} \ \mathsf{from} \ X \right>.$

Sometimes we can localize:

 $A_X[(x_1 + \cdots + x_n)^{-1}] \cong$ Convolution algebra of the groupoid $\mathbb{Z} \ltimes X$

Monomial algebras and symbolic dynamics

 Σ - finite alphabet, $X \subseteq \Sigma^{\mathbb{N}}$ a closed, shift-invariant subspace (subshift). Complexity: $p_X(n) = \#$ {Subwords of X of length n}.

 $A_X = F\left< \Sigma \right> / \left< \mathsf{Monomials} \ \mathsf{which} \ \mathsf{do} \ \mathsf{not} \ \mathsf{factor} \ \mathsf{any} \ \mathsf{word} \ \mathsf{from} \ X \right>.$

Sometimes we can localize:

 $A_X[(x_1 + \cdots + x_n)^{-1}] \cong$ Convolution algebra of the groupoid $\mathbb{Z} \ltimes X$

	Monomial algebra
\longleftrightarrow	Growth
\longleftrightarrow	Prime
\longleftrightarrow	PI of linear growth
\longleftrightarrow	Projectively simple
	<> <>

 $\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

Growth, dynamics & noncomm. algebras

Be'eri Greenfeld (UCSD)

 $\dim X \times Y = \dim X + \dim Y \text{ (manifolds, varieties)}$ $\mathsf{GKdim}(A \otimes_F B) \text{ vs. } \mathsf{GKdim}(A) + \mathsf{GKdim}(B)?$

 $\dim X \times Y = \dim X + \dim Y \text{ (manifolds, varieties)}$ $\mathsf{GKdim}(A \otimes_F B) \text{ vs. } \mathsf{GKdim}(A) + \mathsf{GKdim}(B)?$ $\mathsf{GKdim}(A) = \alpha \ge \mathsf{GKdim}(B) = \beta \ge 2. \quad \mathsf{GKdim}(A \otimes_F B) = \gamma = ?$

dim $X \times Y = \dim X + \dim Y$ (manifolds, varieties) GKdim $(A \otimes_F B)$ vs. GKdim(A) + GKdim(B)? GKdim $(A) = \alpha \ge$ GKdim $(B) = \beta \ge 2$. GKdim $(A \otimes_F B) = \gamma =$? Warfield ('84): $\alpha + 2 \le \gamma \le \alpha + \beta$ and inequalities are best possible. Krempa-Okniński ('87): Each value within $[\alpha + 2, \alpha + \beta]$ can occur as

Be'eri Greenfeld (UCSD) Gre

 $GKdim(A \otimes_F B).$

 $\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

 $\operatorname{GKdim}(A \otimes_F B)$ vs. $\operatorname{GKdim}(A) + \operatorname{GKdim}(B)$?

 $\mathsf{GKdim}(A) = \alpha \ge \mathsf{GKdim}(B) = \beta \ge 2$. $\mathsf{GKdim}(A \otimes_F B) = \gamma = ?$

Warfield ('84): $\alpha + 2 \le \gamma \le \alpha + \beta$ and inequalities are best possible. Krempa-Okniński ('87): *Each value* within $[\alpha + 2, \alpha + \beta]$ can occur as GKdim $(A \otimes_F B)$. (Pathological monomial algebras with nilpotent ideals)

Question (Krempa-Okniński, '87; Krause-Lenagan, '00)

Are there such examples among semiprime algebras?

dim $X \times Y = \dim X + \dim Y$ (manifolds, varieties)

 $\operatorname{GKdim}(A \otimes_F B)$ vs. $\operatorname{GKdim}(A) + \operatorname{GKdim}(B)$?

 $\mathsf{GKdim}(A) = \alpha \ge \mathsf{GKdim}(B) = \beta \ge 2$. $\mathsf{GKdim}(A \otimes_F B) = \gamma = ?$

Warfield ('84): $\alpha + 2 \le \gamma \le \alpha + \beta$ and inequalities are best possible. Krempa-Okniński ('87): *Each value* within $[\alpha + 2, \alpha + \beta]$ can occur as GKdim $(A \otimes_F B)$. (Pathological monomial algebras with nilpotent ideals)

Question (Krempa-Okniński, '87; Krause-Lenagan, '00)

Are there such examples among semiprime algebras?

Theorem (G.-Zelmanov, '22)

For any $2 \le \alpha \le \beta$ and $\gamma \in [\alpha + 2, \alpha + \beta]$ there exist simple algebras $\operatorname{GKdim}(A) = \alpha, \operatorname{GKdim}(B) = \beta, \operatorname{GKdim}(A \otimes_F B) = \gamma.$

Toeplitz subshifts with highly correlated complexity \rightsquigarrow simple convolution algebras, growth controlled by the prescribed complexities $(\exists b \in \exists b \in$

Be'eri Greenfeld (UCSD)

Growth, dynamics & noncomm. algebras

Problem (The Kurosh Problem, '41)

Is every finitely generated, algebraic algebra finite-dimensional?

Problem (The Kurosh Problem, '41)

Is every finitely generated, algebraic algebra finite-dimensional?

Golod-Shafarevich ('64): F.g. infinite-dimensional nil algebras \rightsquigarrow f.g. infinite torsion groups Are there solutions to the Kurosh Problem with restricted growth?

Problem (The Kurosh Problem, '41)

Is every finitely generated, algebraic algebra finite-dimensional?

Golod-Shafarevich ('64): F.g. infinite-dimensional nil algebras \rightsquigarrow f.g. infinite torsion groups

Are there solutions to the Kurosh Problem with restricted growth?

- There exist nil algebras with GK $<\infty$ (Lenagan-Smoktunowicz, '06)
- There exist nil algebras of intermediate growth (Smoktunowicz, '14)

The strong quantitative version of the Kurosh Problem:

Conjecture (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

$$\begin{cases} Growth functions^* \\ of algebras \end{cases} = \begin{cases} Growth functions \\ of nil algebras \end{cases}$$

*Except for algebras of linear growth

June 2023

< □ > < □ > < □ > < □ > < □ > < □ >

э

The Quantitative Kurosh Problem

The growth function of any algebra is increasing f(n) < f(n+1) and submultiplicative $f(n+m) \le f(n)f(m)$ ('natural candidates'). For any such f there is an algebra A with $f(n) \le \gamma_A(n) \le nf(n)$.

The Quantitative Kurosh Problem

The growth function of any algebra is increasing f(n) < f(n+1) and submultiplicative $f(n+m) \le f(n)f(m)$ ('natural candidates'). For any such f there is an algebra A with $f(n) \le \gamma_A(n) \le nf(n)$.

Theorem (G.-Zelmanov, '22)

For any increasing, submultiplicative function f and an arbitrarily slow 'distortion' $\omega(n) \rightarrow \infty$ there exists a nil algebra/Lie algebra A such that:

$$f(n/\omega(n)) \preceq \gamma_A(n) \preceq poly(n) \cdot f(n)$$

E.g. $\exp\left(n^{\alpha+o(1)}\right)$ for any α and many other growth types.

The Quantitative Kurosh Problem

The growth function of any algebra is increasing f(n) < f(n+1) and submultiplicative $f(n+m) \le f(n)f(m)$ ('natural candidates'). For any such f there is an algebra A with $f(n) \le \gamma_A(n) \le nf(n)$.

Theorem (G.-Zelmanov, '22)

For any increasing, submultiplicative function f and an arbitrarily slow 'distortion' $\omega(n) \rightarrow \infty$ there exists a nil algebra/Lie algebra A such that:

$$f(n/\omega(n)) \preceq \gamma_A(n) \preceq poly(n) \cdot f(n)$$

E.g. $\exp\left(n^{\alpha+o(1)}\right)$ for any α and many other growth types.

- We can construct monomial algebras $A = A_X$ with controlled growth (via complexity of X) Problem: Monomial algebras are not nil.
- \bullet Solution: (temporarily) give up finite generation. 'Deform' A to a locally nilpotent algebra \widetilde{A}
- Construct a linear map γ into \widetilde{A} with fine control on its 'rate of expansiveness'. Find 'sufficiently big' nil subalgebras of $B \wr_{\gamma} \widetilde{A}$

Be'eri Greenfeld (UCSD)

Subshift Monomial algebra Any $\leftrightarrow \rightarrow$? Transitive $\leftrightarrow \rightarrow$?

Example: X =Closure of the shift orbit of *ababbabbb*...

 $A_X = F \langle a, b \rangle / \langle Monomials which do not factor ababbabbb ... \rangle$

Which ring-theoretic property 'encodes' such a structure?

э

Subshift Monomial algebra Any $\leftrightarrow \rightarrow$? Transitive $\leftrightarrow \rightarrow$?

Example: X =Closure of the shift orbit of *ababbabbb*...

 $A_X = F \langle a, b \rangle / \langle Monomials which do not factor ababbabbb ... \rangle$

Which ring-theoretic property 'encodes' such a structure? A graded module *P* is a **point module** if $H_P(t) = 1 + t + t^2 + \cdots$

$$\mathcal{P}_n(A) = Moduli \text{ space of } n\text{-truncated point } A\text{-modules}$$

 $\mathcal{P}(A) = \varprojlim_n \mathcal{P}_n(A) \xleftarrow{1:1} \{Point A\text{-modules}\}/\cong$

(Pro)algebraic geometry of monomial algebras

Graded commutative algebras \iff Projective varieties "Nice" nc algebras \iff Projective varieties + aut. twist Monomial algebras \iff Proalgebraic varieties

Graded algebras might have no point modules at all! But monomial algebras always do (reflecting their dynamical origin).

Example: $A = F \langle x, y \rangle \rightsquigarrow \mathbb{P}^1 \times \mathbb{P}^1 \times \cdots$ (in fact, characterizes free alg.)

Be'eri Greenfeld (UCSD)

(Pro)algebraic geometry of monomial algebras

Graded commutative algebras \iff Projective varieties "Nice" nc algebras \iff Projective varieties + aut. twist Monomial algebras \iff Proalgebraic varieties

Graded algebras might have no point modules at all! But monomial algebras always do (reflecting their dynamical origin). Example: $A = F \langle x, y \rangle \rightsquigarrow \mathbb{P}^1 \times \mathbb{P}^1 \times \cdots$ (in fact, characterizes free alg.)

Theorem (Bell-G., '23)

A monomial algebra is isomorphic to A_X where X is a **transitive** subshift iff it admits a **faithful point module**.

A monomial algebra is isomorphic to A_X for some subshift iff:

P

$$\bigcap_{\text{oint modules}} Ann(P) = 0$$

Monomial \mathbb{P}^1

Sturmian subshifts: minimal aperiodic of complexity $p_X(n) = n + 1$. Example (Fibonacci word):

 A_X for X Sturmian \leftrightarrow Proj. simple with $H(t) = \frac{1}{(1-t)^2}$ ("Monomial \mathbb{P}^1 ")

Monomial \mathbb{P}^1

Sturmian subshifts: minimal aperiodic of complexity $p_X(n) = n + 1$. Example (Fibonacci word):

0100101001001...

 A_X for X Sturmian \leftrightarrow Proj. simple with $H(t) = \frac{1}{(1-t)^2}$ ("Monomial \mathbb{P}^1 ")

Theorem (Bell-G., '23)

If A is a "monomial \mathbb{P}^1 " then its proalgebraic variety of point modules is isomorphic to $\mathbb{P}^1 \cup$ Cantor set, intersecting at two points.

Be'eri Greenfeld (UCSD)

June 2023

Questions?

Be'eri Greenfeld (UCSD)

・ロト ・四ト ・ヨト ・ヨト

3