## Strong semilattices of skew braces

Marzia Mazzotta<br>Università del Salento<br>Joint work with Francesco Catino and Paola Stefanelli<br>

Groups, Rings and the Yang-Baxter equation 2023
20th June 2023, Blankenberge

## Solutions of the Yang-Baxter equation

If $S$ is a set, a map $r: S \times S \longrightarrow S \times S$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)=\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)
$$

is called set-theoretic solution, or briefly solution, of the Yang-Baxter equation.

For a solution r, we introduce two maps
for all $a, b \in S$. In particular, the solution $r$ is said to $b 0$

- left non-deqenerate if $\lambda_{3}$ is hiective for ever
- right non-degenerate if $\alpha_{k}$ is bijective, for overybe $S$;
- non-degenerate if $r$ is both left and right non-degenerate.


## Solutions of the Yang-Baxter equation

If $S$ is a set, a map $r: S \times S \longrightarrow S \times S$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)=\left(\mathrm{id}_{S} \times r\right)\left(r \times \mathrm{id}_{S}\right)\left(\mathrm{id}_{S} \times r\right)
$$

is called set-theoretic solution, or briefly solution, of the Yang-Baxter equation.

For a solution $r$, we introduce two maps $\lambda_{a}, \rho_{b}: S \rightarrow S$ and write

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right),
$$

for all $a, b \in S$. In particular, the solution $r$ is said to be

- left non-degenerate if $\lambda_{a}$ is bijective, for every $a \in S$;
- right non-degenerate if $\rho_{b}$ is bijective, for every $b \in S$;
- non-degenerate if $r$ is both left and right non-degenerate.


## Solutions associated to skew braces

[Rump, 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace. Interesting generalizations have been produced over the years.

```
[Rump, 2007 - Guarnieri, Vendramin, 2017]
A triple ( }B,+,\circ)\mathrm{ is called skew brace if ( }B,+)\mathrm{ ) and ( }B,\circ\mathrm{ ) are groups
```

and it holds

If $(B,+)$ is abelian, then $(B,+, \circ)$ is a brace.
Any skew brace $B$ gives rise to a non-degenerate
that is involutive, i.e., $r^{2}=$ id $_{B \times B}$, if and only if $(B,+, 0)$ is a brace

## Solutions associated to skew braces

[Rump, 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace. Interesting generalizations have been produced over the years.

## [Rump, 2007-Guarnieri, Vendramin, 2017]

A triple $(B,+, \circ)$ is called skew brace if $(B,+)$ and ( $B, \circ$ ) are groups and it holds

$$
\forall a, b, c \in B \quad a \circ(b+c)=a \circ b-a+a \circ c .
$$

If $(B,+)$ is abelian, then $(B,+, \circ)$ is a brace.
Any skew brace $B$ gives rise to a non-degenerate
$r_{B}(a, b)=(-a+a \circ b,(-a+a \circ b) \circ a \circ b)$
that is involutive, i.e., $r^{2}=i d_{B \times B}$, if and only if $(B,+, 0)$ is a brace

## Solutions associated to skew braces

[Rump, 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of brace. Interesting generalizations have been produced over the years.

## [Rump, 2007-Guarnieri, Vendramin, 2017]

A triple $(B,+, \circ)$ is called skew brace if $(B,+)$ and ( $B, \circ$ ) are groups and it holds

$$
\forall a, b, c \in B \quad a \circ(b+c)=a \circ b-a+a \circ c .
$$

If $(B,+)$ is abelian, then $(B,+, \circ)$ is a brace.
Any skew brace $B$ gives rise to a non-degenerate bijective solution

$$
r_{B}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

that is involutive, i.e., $r^{2}=\mathrm{id}_{B \times B}$, if and only if $(B,+, \circ)$ is a brace.

## The opposite skew brace

If $(B,+, \circ)$ is a skew brace, one can consider the skew brace

$$
B^{o p}=\left(B,+{ }^{o p}, o\right)
$$

with $a+{ }^{\circ p} b=b+a$, called the opposite skew brace of $(B,+, \circ)$.

As shown by [Koch, Truman, 2020], considered the solution $r_{B o p}$ associated to the skew brace $B^{o p}$
one has that

## The opposite skew brace

If $(B,+, \circ)$ is a skew brace, one can consider the skew brace

$$
B^{o p}=\left(B,+{ }^{o p}, o\right)
$$

with $a+{ }^{\circ p} b=b+a$, called the opposite skew brace of $(B,+, \circ)$.

As shown by [Koch, Truman, 2020], considered the solution $r_{B^{\circ \rho}}$ associated to the skew brace $B^{\circ p}$

$$
r_{B^{\circ p}}(a, b)=\left(a \circ b-a,(a \circ b-a)^{-} \circ a \circ b\right),
$$

one has that

$$
r_{B}^{-1}=r_{B o p}
$$

## Semi-braces

## [Catino, Colazzo, Stefanelli, 2017 ]

A (left cancellative) semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a left cancellative semigroup, $(S, \circ$ ) is a group, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right),
$$

where $a^{-}$denotes the inverse of $a$ with respect to $\circ$.
Every skew brace $(B,+, 0)$ is a (left cancellative) semi
for all $a, c \in B$.
If $(S+n)$ is a (let cancellative) semi-brace, thena
$r_{S}(a, b)=(a \circ(a+b),(a+b) \circ b)$

## Semi-braces

## [Catino, Colazzo, Stefanelli, 2017 ]

A (left cancellative) semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a left cancellative semigroup, $(S, \circ)$ is a group, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right),
$$

where $a^{-}$denotes the inverse of $a$ with respect to $\circ$.
Every skew brace $(B,+, \circ)$ is a (left cancellative) semi-brace since

$$
a \circ\left(a^{-}+c\right)=-a+a \circ c,
$$

for all $a, c \in B$.
If $(S,+, \circ)$ is a (left cancellative) semi-brace, thema $r_{S}(a, b)=(a \circ(a+b),(a+b) \circ b)$

## Semi-braces

## [Catino, Colazzo, Stefanelli, 2017 ]

A (left cancellative) semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a left cancellative semigroup, $(S, \circ)$ is a group, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right),
$$

where $a^{-}$denotes the inverse of $a$ with respect to $\circ$.
Every skew brace $(B,+, \circ)$ is a (left cancellative) semi-brace since

$$
a \circ\left(a^{-}+c\right)=-a+a \circ c,
$$

for all $a, c \in B$.
If $(S,+, \circ)$ is a (left cancellative) semi-brace, the map

$$
r_{S}(a, b)=\left(a \circ\left(a^{-}+b\right),\left(a^{-}+b\right)^{-} \circ b\right)
$$

is a left non-degenerate solution.

## Semi-braces

## [Jespers, Van Antwerpen, 2019]

A semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a semigroup, $(S, \circ)$ is a group, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right) .
$$

[Catino, Colazzo, Stefanelli, 2020] showed that the m
is a solution if and only if
where 0 is the identity of $(S, \circ)$

## Semi-braces

## [Jespers, Van Antwerpen, 2019]

A semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a semigroup, $(S, \circ)$ is a group, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right) .
$$

[Catino, Colazzo, Stefanelli, 2020] showed that the map $r_{S}$ given by

$$
r_{S}(a, b)=\left(a \circ\left(a^{-}+b\right),\left(a^{-}+b\right)^{-} \circ b\right)
$$

is a solution if and only if

$$
\forall a, b, x \in S \quad x+a \circ(0+b)=a+\lambda_{a}(b) \circ\left(0+\rho_{b}(a)\right),
$$

where 0 is the identity of $(S, \circ)$.

## Semi-braces

## [Jespers, Van Antwerpen, 2019]

A semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a semigroup, $(S, \circ)$ is a group, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right) .
$$

[Catino, Colazzo, Stefanelli, 2020] showed that the map $r_{S}$ given by

$$
r_{S}(a, b)=\left(a \circ\left(a^{-}+b\right),\left(a^{-}+b\right)^{-} \circ b\right)
$$

is a solution if and only if

$$
\forall a, b, x \in S \quad x+a \circ(0+b)=a+\lambda_{a}(b) \circ\left(0+\rho_{b}(a)\right),
$$

where 0 is the identity of $(S, \circ)$.

## Inverse semi-braces

## [Catino, M., Stefanelli, 2021]

An inverse semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a semigroup, $(S, \circ)$ is an inverse semigroup, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right),
$$

where $a^{-}$denotes the inverse of $a$ with respect to the $\circ$.

A semigroup $(S, \circ)$ is called inverse if, for each $a \in S$, there exists a unique $a^{-} \in S$ satisfying

Every group is an inverse semigroup and the idempotent elements commute each other.

Under suitable conditions, the map rs associated to an inverse
semi-brace (S. + o ) is a solution.

## Inverse semi-braces

## [Catino, M., Stefanelli, 2021]

An inverse semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a semigroup, $(S, \circ)$ is an inverse semigroup, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right),
$$

where $a^{-}$denotes the inverse of $a$ with respect to the $\circ$.

A semigroup ( $S, \circ$ ) is called inverse if, for each $a \in S$, there exists a unique $a^{-} \in S$ satisfying

$$
a \circ a^{-} \circ a=a \quad \text { and } \quad a^{-} \circ a \circ a^{-}=a^{-} .
$$

Every group is an inverse semigroup and the idempotent elements commute each other.

Under suitable conditions, the map $r_{s}$ associated to an inverse semi-brace $(S .+, o)$ is a solution

## Inverse semi-braces

## [Catino, M., Stefanelli, 2021]

An inverse semi-brace is a triple $(S,+, \circ)$ such that $(S,+)$ is a semigroup, $(S, \circ)$ is an inverse semigroup, and

$$
\forall a, b, c \in S \quad a \circ(b+c)=a \circ b+a \circ\left(a^{-}+c\right),
$$

where $a^{-}$denotes the inverse of $a$ with respect to the $\circ$.

A semigroup ( $S, \circ$ ) is called inverse if, for each $a \in S$, there exists a unique $a^{-} \in S$ satisfying

$$
a \circ a^{-} \circ a=a \quad \text { and } \quad a^{-} \circ a \circ a^{-}=a^{-} .
$$

Every group is an inverse semigroup and the idempotent elements commute each other.

Under suitable conditions, the map $r_{S}$ associated to an inverse semi-brace $(S,+, \circ)$ is a solution.

## Weak braces

## Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and $(S, \circ)$ are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and purple $a^{-}$denote the inverses of $(S,+)$ and $(S, \circ)$.


## Weak braces

## Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and $(S, \circ)$ are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and purple $a^{-}$denote the inverses of $(S,+)$ and $(S, \circ)$.


## Weak braces

## Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and $(S, \circ)$ are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and purple $a^{-}$denote the inverses of $(S,+)$ and $(S, \circ)$.

Every weak brace $(S,+, \circ)$ is an inverse semi-brace since

$$
\forall a, c \in S \quad a \circ\left(a^{-}+c\right)=-a+a \circ c .
$$

## Weak braces

## Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S,+, \circ)$ such that $(S,+)$ and $(S, \circ)$ are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ(b+c)=a \circ b-a+a \circ c$,
- $\forall a \in S \quad a \circ a^{-}=-a+a$,
where $-a$ and purple $a^{-}$denote the inverses of $(S,+)$ and $(S, \circ)$.

Every weak brace $(S,+, \circ)$ is an inverse semi-brace since

$$
\forall a, c \in S \quad a \circ\left(a^{-}+c\right)=-a+a \circ c .
$$



## Idempotents of weak braces

In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$. As a consequence, if $|\mathrm{E}(S)|=1$, then $S$ is a skew brace.

## Key Lemma <br> Let $(S,+, \circ$ ) be a weak brace. Then, it holds

for all $e \in E(S)$ and $a \in S$.

In particular, $\mathrm{E}(\mathrm{S})$ also is a (trivial) weak brace.

## Idempotents of weak braces

In any weak brace $\mathrm{E}(S,+)=\mathrm{E}(S, \circ)$ thus we will simply write $\mathrm{E}(S)$.
As a consequence, if $|E(S)|=1$, then $S$ is a skew brace.

## Key Lemma

Let $(S,+, \circ)$ be a weak brace. Then, it holds

$$
e+a=e \circ a
$$

for all $e \in E(S)$ and $a \in S$.

In particular, $\mathrm{E}(\mathrm{S})$ also is a (trivial) weak brace.

## Solutions associated to weak braces

If $(S,+, \circ)$ is a weak brace, then the map

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution that has a behaviour close to bijectivity.

Given a weak brace $(S,+, \circ)$, we can consider its ppp brace that is $S^{o p}=\left(S,+{ }^{\circ p}, o\right)$, with $a+{ }^{\circ p} b=b+a$, for a

The solution $r_{\text {Sop }}$ associated to the opposite weak brace $S^{o p}$ of $S$ is such that

Hence, $r_{s}$ is a completely regular element of $\operatorname{Map}(S \times S)$

## Solutions associated to weak braces

If $(S,+, \circ)$ is a weak brace, then the map

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution that has a behaviour close to bijectivity.

Given a weak brace $(S,+, \circ)$, we can consider its opposite weak brace that is $S^{\circ p}=\left(S,+{ }^{\circ D}, o\right)$, with $a+{ }^{o D} b=b+a$, for all $a, b \in S$.

The solution $r_{\text {Sop }}$ associated to the opposite weak brace $S^{o p}$ of $S$ is such that

Hence, $r_{S}$ is a completely regular element of $\operatorname{Map}(S \times S)$

## Solutions associated to weak braces

If $(S,+, \circ)$ is a weak brace, then the map

$$
r_{S}(a, b)=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right),
$$

for all $a, b \in S$, is a solution that has a behaviour close to bijectivity.

Given a weak brace ( $S,+, \circ$ ), we can consider its opposite weak brace that is $S^{\circ p}=\left(S,+{ }^{\circ D}, o\right)$, with $a+{ }^{o D} b=b+a$, for all $a, b \in S$.

The solution $r_{\text {Sop }}$ associated to the opposite weak brace $S^{o p}$ of $S$ is such that

$$
r_{S} r_{\text {Sop }} r_{S}=r_{S}, \quad r_{\text {Sop }} r_{S} r_{\text {Sop }}=r_{\text {Sop }}, \quad \text { and } \quad r_{S} r_{\text {Sop }}=r_{\text {Sop }} r_{S}
$$

Hence, $r_{s}$ is a completely regular element of $\operatorname{Map}(S \times S)$.

## Structural properties of weak braces

## Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup $S$ is a Clifford semigroup if it has central idempotents.

Generally, $(S, \circ)$ is not a Clifford semigroup.
Example
Let $X:=\{1, x, y\}, S$ the upper semilattice on $X$ with join 1 , and $T$ the
commutative inverse monoid on $X$ with identity 1 such that $x x=y y=x$ and
$x y=y$. Consider the trivial weak braces on $S$ and $T$. Let $\tau:=(x y) \in \operatorname{Aut}(S)$
and $\sigma: T \rightarrow$ Aut $(S)$ defined by $\sigma(1)=\sigma(x)=i d_{S}$ and $\sigma(y)=\tau$. Then, $S \rtimes_{\sigma} T$
is a weak brace such that ( $S \times T, \circ$ ) is not Clifford, since

## Structural properties of weak braces

## Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup $S$ is a Clifford semigroup if it has central idempotents.

> Generally, $(S, \circ)$ is not a Clifford semigroup.
> Example
> Let $X:=\{1, x, y\}, S$ the upper semilattice on $X$ with join 1 , and $T$ the
> commutative inverse monoid on $X$ with identity 1 such that $x x=y y=x$ and
> $x y=y$. Consider the trivial weak braces on $S$ and $T$. Let $\tau:=(x y) \in \operatorname{Aut}(S)$ and $\sigma: T \rightarrow$ Aut $(S)$ defined by $\sigma(1)=\sigma(x)=\mathrm{id}_{S}$ and $\sigma(y)=\tau$. Then, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford, since

## Structural properties of weak braces

## Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup $S$ is a Clifford semigroup if it has central idempotents.

Generally, $(S, \circ)$ is not a Clifford semigroup.

## Example

Let $X:=\{1, x, y\}, S$ the upper semilattice on $X$ with join 1 , and $T$ the commutative inverse monoid on $X$ with identity 1 such that $x x=y y=x$ and $x y=y$. Consider the trivial weak braces on $S$ and $T$.
is a weak brace such that $(S \times T, \circ)$ is not Clifford, since
$\square$

## Structural properties of weak braces

## Theorem

Let $(S,+, \circ)$ be a weak brace. Then, $(S,+)$ is a Clifford semigroup.

An inverse semigroup $S$ is a Clifford semigroup if it has central idempotents.

Generally, $(S, \circ)$ is not a Clifford semigroup.

## Example

Let $X:=\{1, x, y\}, S$ the upper semilattice on $X$ with join 1 , and $T$ the commutative inverse monoid on $X$ with identity 1 such that $x x=y y=x$ and $x y=y$. Consider the trivial weak braces on $S$ and $T$. Let $\tau:=(x y) \in \operatorname{Aut}(S)$ and $\sigma: T \rightarrow \operatorname{Aut}(S)$ defined by $\sigma(1)=\sigma(x)=$ ids and $\sigma(y)=\tau$. Then, $S_{\rtimes_{\sigma}} T$ is a weak brace such that ( $S \times T, \circ$ ) is not Clifford, since

$$
(y, y) \circ(y, y)^{-}=(y, x) \quad \& \quad(y, y)^{-} \circ(y, y)=(x, x) .
$$

## Weak braces coming from RB-operators

Examples of weak brace having can be obtained by using Rota-Baxter operators:

## Definition (Catino, M., Stefanelli, 2023)

If $(S,+)$ is a Clifford semigroup, any map $\mathfrak{R}: S \rightarrow S$ satisfying

$$
\begin{aligned}
\forall a, b \in S & \Re(a)+\Re(b)=\Re(a+\mathfrak{R}(a)+b-\mathfrak{R}(a)) \\
& a+\Re(a)-\Re(a)=a
\end{aligned}
$$

is called Rota-Baxter operator on $(S,+)$.

Let $\Re$ an RB-operator on a Clifford semigroup $(S,+)$. Set
then $\left(S,+, o_{n}\right)$ is a weak brace such that $\left(S, o_{n}\right)$ is a Clifford
semiarnion

## Weak braces coming from RB-operators

Examples of weak brace having can be obtained by using Rota-Baxter operators:

## Definition (Catino, M., Stefanelli, 2023)

If $(S,+)$ is a Clifford semigroup, any map $\mathfrak{R}: S \rightarrow S$ satisfying

$$
\begin{aligned}
\forall a, b \in S & \Re(a)+\Re(b)=\Re(a+\mathfrak{R}(a)+b-\Re(a)) \\
& a+\Re(a)-\Re(a)=a
\end{aligned}
$$

is called Rota-Baxter operator on $(S,+)$.

Let $\mathfrak{R}$ an RB-operator on a Clifford semigroup $(S,+)$. Set

$$
\forall a, b \in S \quad a \circ_{\Re} b:=a+\Re(a)+b-\Re(a),
$$

then $\left(S,+, o_{\Re}\right)$ is a weak brace such that $\left(S, o_{\Re}\right)$ is a Clifford semigroup.

## Dual weak braces

## Definition

A weak brace $(S,+, \circ)$ is called dual weak brace if $(S, \circ)$ is a Clifford semigroup.

If $(S,+, \circ)$ is a dual weak brace, the solution $r_{S}$ has aisp a behaviour close to the non-degeneracy in the sense that
for every $a \in S$.

## Dual weak braces

## Definition

A weak brace $(S,+, \circ)$ is called dual weak brace if $(S, \circ)$ is a Clifford semigroup.

If $(S,+, \circ)$ is a dual weak brace, the solution $r_{S}$ has also a behaviour close to the non-degeneracy in the sense that

$$
\begin{array}{llll}
\lambda_{a} \lambda_{a^{-}} \lambda_{a}=\lambda_{a}, & \lambda_{a^{-}} \lambda_{a} \lambda_{a^{-}}=\lambda_{a^{-}}, & \text {and } & \lambda_{a} \lambda_{a-}=\lambda_{a^{-}} \lambda_{a} \\
\rho_{a} \rho_{a^{-}} \rho_{a}=\rho_{a}, & \rho_{a^{-}} \rho_{a} \rho_{a^{-}}=\rho_{a^{-}}, & \text {and } & \rho_{a} \rho_{a}=\rho_{a^{-}} \rho_{a}
\end{array}
$$

for every $a \in S$.

## Strong semilattice of skew braces

Let us consider the following:

- Y a (lower) semilattice;

braces such that


Then, $S=\bigcup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with the operation aiven by
is a dual weak brace

## Strong semilattice of skew braces

Let us consider the following:

- Y a (lower) semilattice;
- $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint skew braces;


[^0]is a dual weak brace

## Strong semilattice of skew braces

Let us consider the following:

- Y a (lower) semilattice;
- $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint skew braces;
- For each pair $\alpha, \beta$ of elements of $Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of $B_{\alpha}$, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

## Then, $S=\bigcup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with the operation

 given by
## is a dual weak brace

## Strong semilattice of skew braces

Let us consider the following:

- Y a (lower) semilattice;
- $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint skew braces;
- For each pair $\alpha, \beta$ of elements of $Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of $B_{\alpha}$, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

Then, $S=\cup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with the operation given by

$$
\begin{aligned}
\forall a \in B_{\alpha}, b \in B_{\beta} & a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \\
& a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b)
\end{aligned}
$$

is a dual weak brace.

## Strong semilattice of skew braces

Let us consider the following:

$$
\phi_{\alpha, \alpha}=\mathrm{id}_{B_{\alpha}}
$$

$$
\Omega
$$



- Y a (lower) semilattice;
- $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint skew braces;
- For each pair $\alpha, \beta$ of elements of $Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha, \alpha}$ is the identical automorphism of $B_{\alpha}$, for every $\alpha \in Y$;
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$.

Then, $S=\cup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with the operation given by

$$
\begin{aligned}
\forall a \in B_{\alpha}, b \in B_{\beta} & a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \\
& a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b)
\end{aligned}
$$

is a dual weak brace.

## Strong semilattice of skew braces

## Theorem (Catino, M., Stefanelli, 2023)

Let $Y$ be a (lower) semilattice, $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint skew braces. For each $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha, \alpha}$ id $_{B_{\alpha}}$, for every $\alpha \in Y$,
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S=\cup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with

$$
a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \quad \text { and } \quad a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b),
$$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace.
Conversely, any dual weak brace is a strong semilattice of skew braces.

## Strong semilattice of skew braces

## Theorem (Catino, M., Stefanelli, 2023)

Let $Y$ be a (lower) semilattice, $\left\{B_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint skew braces. For each $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, let $\phi_{\alpha, \beta}: B_{\alpha} \rightarrow B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha, \alpha} \mathrm{id}_{B_{\alpha}}$, for every $\alpha \in Y$,
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$.

Then, $S=\cup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with

$$
a+b:=\phi_{\alpha, \alpha \beta}(a)+\phi_{\beta, \alpha \beta}(b) \quad \text { and } \quad a \circ b:=\phi_{\alpha, \alpha \beta}(a) \circ \phi_{\beta, \alpha \beta}(b),
$$

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace.
Conversely, any dual weak brace is a strong semilattice of skew braces.

## An easy example

## Let us consider:

- $Y=\{\alpha, \beta\}$, with $\alpha>\beta$,
- $B_{\alpha}$ the trivial skew brace on the cyclic group $C_{3}$,
- $B_{\beta}$ the trivial skew brace on the symmetric group $\mathrm{Sym}_{3}$
- $\phi_{\alpha, \beta}: C_{3} \rightarrow$ Sym $_{3}$ the homomorphism given by

$$
\phi_{\alpha, \beta}(0)=i d_{3}, \phi_{\alpha, \beta}(1)=(123), \phi_{\alpha, \beta}(2)=(132) .
$$

Then, $S=B_{\alpha} \cup B_{\beta}$ endowed with the operation given by

$$
\begin{aligned}
\forall a \in B_{\alpha}, b \in B_{\beta} & a+b:=\phi_{\alpha, \beta}(a)+\phi_{\beta, \beta}(b) \\
& a \circ b:=\phi_{\alpha, \beta}(a) \circ \phi_{\beta, \beta}(b)
\end{aligned}
$$

is a (not trivial) dual weak brace.

## Homomorphisms between skew braces

## Problem

Finding homomorphism between skew braces for constructing dual weak braces.
problem already emerged in literature, such as [Cedó, 2018], [Vendramin, 2019] pose the problem C donputing the automorphism groups of skew braces of size p'

- [Zenouz, 2019] determines the automorphism grou order $p>3$
[Puljić, Smoktunowicz, Zenouz, 2022] describe cardinality $p^{4}$ which are not right nilpotent
- [Dathen Vadav, 20231 prosent an axant sequend automorphism groups of skew braces with the secone cobomology group acting on a trivial brace with non-trivial aclions
" ratution, Fedele, Gaut-l: nonny aro interested in sinding isomorphic


## Homomorphisms between skew braces

## Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature, such as:

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size $p^{n}$
- $\begin{aligned} & \text { [Zenouz, 2019] determines the automorphism gro } \\ & \text { order } p>3 \\ & \text { - }[\text { [Puljić, Smoktunowicz, Zenouz, 2022] describe }\end{aligned}$ cardinality $p^{4}$ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact seauenc automorphism groups of skew braces with the secone cobomology group acting on a trivial brace with non-trivial actions
- [Civino. Fedele Gavinli, 20231 are interested in finding isomorphic


## Homomorphisms between skew braces

## Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature, such as:

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size $p^{n}$
- [Zenouz, 2019] determines the automorphism group of skew braces of order $p>3$
- [Puljić, Smoktunowicz, Zenouz, 2022] describe cardinality $p^{4}$ which are not right nilpotent
- [Rathea Vaday 20231 nrecent an avact saquence automorphism groups of skew braces with the secone comomology group acting on a trivial brace with non-trivial actions
- RPivine Fedele Gavinli 20221 are intareoted in finding isomorphic $\mathrm{F}_{2}$-braces


## Homomorphisms between skew braces

## Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature, such as:

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size $p^{n}$
- [Zenouz, 2019] determines the automorphism group of skew braces of order $p>3$
- [Puljić, Smoktunowicz, Zenouz, 2022] describe $\mathbb{F}_{p}$-braces of cardinality $p^{4}$ which are not right nilpotent



## Homomorphisms between skew braces

## Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature, such as:

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size $p^{n}$
- [Zenouz, 2019] determines the automorphism group of skew braces of order $p>3$
- [Puljić, Smoktunowicz, Zenouz, 2022] describe $\mathbb{F}_{p}$-braces of cardinality $p^{4}$ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence connecting automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
* [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic $\mathrm{F}_{2}$-braces


## Homomorphisms between skew braces

## Problem

Finding homomorphism between skew braces for constructing dual weak braces.

This problem already emerged in literature, such as:

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size $p^{n}$
- [Zenouz, 2019] determines the automorphism group of skew braces of order $p>3$
- [Puljić, Smoktunowicz, Zenouz, 2022] describe $\mathbb{F}_{p}$-braces of cardinality $p^{4}$ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence connecting automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic $\mathbb{F}_{2}$-braces


## Strong semilattice of solutions

## Theorem (Catino, Colazzo, Stefanelli, 2021)

Let $Y$ be a (lower) semilattice, $\left\{r_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint solutions on $X_{\alpha}$ indexed by $Y$ such that for each $\alpha \geq \beta$ there is a map $\phi_{\alpha, \beta}: X_{\alpha} \rightarrow X_{\beta}$. Let $X=\cup\left\{X_{\alpha} \mid \alpha \in Y\right\}$ and $r: X \times X \longrightarrow X \times X$ be the map defined as

$$
r(x, y):=r_{\alpha \beta}\left(\phi_{\alpha, \alpha \beta}(x), \phi_{\beta, \alpha \beta}(y)\right)
$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$. If the following conditions are satisfied:


## Strong semilattice of solutions

## Theorem (Catino, Colazzo, Stefanelli, 2021)

Let $Y$ be a (lower) semilattice, $\left\{r_{\alpha} \mid \alpha \in Y\right\}$ a family of disjoint solutions on $X_{\alpha}$ indexed by $Y$ such that for each $\alpha \geq \beta$ there is a map $\phi_{\alpha, \beta}: X_{\alpha} \rightarrow X_{\beta}$. Let $X=\cup\left\{X_{\alpha} \mid \alpha \in Y\right\}$ and $r: X \times X \longrightarrow X \times X$ be the map defined as

$$
r(x, y):=r_{\alpha \beta}\left(\phi_{\alpha, \alpha \beta}(x), \phi_{\beta, \alpha \beta}(y)\right)
$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$. If the following conditions are satisfied:

1. $\phi_{\alpha, \alpha}$ is the identity map of $X_{\alpha}$, for every $\alpha \in Y$,
2. $\phi_{\beta, \gamma} \phi_{\alpha, \beta}=\phi_{\alpha, \gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \geq \beta \geq \gamma$,
3. $\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right) r_{\alpha}=r_{\beta}\left(\phi_{\alpha, \beta} \times \phi_{\alpha, \beta}\right)$, for all $\alpha, \beta \in Y$ such that $\alpha \geq \beta$, then $r$ is a solution on $X$, called strong semilattice of the solutions $r_{\alpha}$.

## The solutions coming from dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace. Then, the solution $r$ associated to $S$ is the strong semilattice of the bijective non-degenerate solutions $r_{\alpha}$ associated to each skew brace $B_{\alpha}$.

Corollary
Let $S=\left[Y ; B_{\alpha} ; \quad\right.$ be a finite dual weak brace and $r$ the solution associated to $S$. Then, $r^{2 k+1}=r$ with $2 k=\operatorname{Icm}\left\{p\left(r_{\alpha}\right) \mid \alpha \in Y\right\}$

Consequently, the solution $r$ associated to a finite/dyansweakrorace $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ is cubic, i.e., $r^{3}=r$, if and only if is involutive, i.e $r_{\alpha}^{2}=\mathrm{id}_{B_{\alpha} \times B_{\alpha}}$, that is each $B_{\alpha}$ is a brace.

## The solutions coming from dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace. Then, the solution $r$ associated to $S$ is the strong semilattice of the bijective non-degenerate solutions $r_{\alpha}$ associated to each skew brace $B_{\alpha}$.

## Corollary

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a finite dual weak brace and $r$ the solution associated to $S$. Then, $r^{2 k+1}=r$ with $2 k=\operatorname{Icm}\left\{p\left(r_{\alpha}\right) \mid \alpha \in Y\right\}$.


## The solutions coming from dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace. Then, the solution $r$ associated to $S$ is the strong semilattice of the bijective non-degenerate solutions $r_{\alpha}$ associated to each skew brace $B_{\alpha}$.

## Corollary

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a finite dual weak brace and $r$ the solution associated to $S$. Then, $r^{2 k+1}=r$ with $2 k=\operatorname{Icm}\left\{p\left(r_{\alpha}\right) \mid \alpha \in Y\right\}$.

Consequently, the solution $r$ associated to a finite dual weak brace $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ is cubic, i.e., $r^{3}=r$, if and only if $r_{\alpha}$ is involutive, i.e., $r_{\alpha}^{2}=\mathrm{id}_{B_{\alpha} \times B_{\alpha}}$, that is each $B_{\alpha}$ is a brace.

## Ideals of dual weak braces

## Definition

A subset $I$ of a dual weak brace $S$ is an ideal of $(S,+, \circ$ ) if

1. $l$ is a normal subsemigroup of $(S,+)$,
2. $\lambda_{a}(I) \subseteq I$, for every $a \in S$,
3. $I$ is a normal subsemigroup of $(S, \circ)$.

If $I$ is an ideal, the relation $\sim /$ on $S$ given by

$$
\forall a, b \in S \quad a \sim, b \Longleftrightarrow a-a=b-b \text { and }
$$

is a congruence of $(S$
Exampie
The set $\operatorname{Soc}(S)=\{a \mid a \in S, \forall b \in S \quad a+b=a \circ b$ and $a+b=b+a\}$ is an ideal of any dual weak brace $(S,+, \circ)$ called socle of $S$

## Ideals of dual weak braces

## Definition

A subset $I$ of a dual weak brace $S$ is an ideal of $(S,+, \circ$ ) if

1. $I$ is a normal subsemigroup of $(S,+)$,
2. $\lambda_{a}(I) \subseteq I$, for every $a \in S$,
3. $I$ is a normal subsemigroup of $(S, \circ)$.

If $I$ is an ideal, the relation $\sim$, on $S$ given by

$$
\forall a, b \in S \quad a \sim b \Longleftrightarrow a-a=b-b \text { and }-a+b \in I,
$$

is a congruence of $(S,+, \circ)$.
Example
The set $\operatorname{Soc}(S)=\{a \mid a \in S, \forall b \in S \quad a+b=a \circ b$ and $a+b=b+a\}$ is an ideal of any dual weak brace $(S,+, 0)$ called socle of $S$

## Ideals of dual weak braces

## Definition

A subset $I$ of a dual weak brace $S$ is an ideal of $(S,+, \circ)$ if

1. $l$ is a normal subsemigroup of $(S,+)$,
2. $\lambda_{a}(I) \subseteq I$, for every $a \in S$,
3. $I$ is a normal subsemigroup of $(S, \circ)$.

If $I$ is an ideal, the relation $\sim$, on $S$ given by

$$
\forall a, b \in S \quad a \sim, b \Longleftrightarrow a-a=b-b \text { and }-a+b \in I,
$$

is a congruence of $(S,+, \circ)$.

## Example

The set $\operatorname{Soc}(S)=\{a \mid a \in S, \forall b \in S \quad a+b=a \circ b$ and $a+b=b+a\}$ is an ideal of any dual weak brace $(S,+, \circ)$ called socle of $S$.

## Ideals of dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $I_{\alpha}$ an ideal of each skew brace $B_{\alpha}$, and set $\psi_{\alpha, \beta}:=\phi_{\alpha,\left.\beta\right|_{I_{\alpha}}}$, for all $\alpha \geq \beta$. If $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then $I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]$ is an ideal of $S$ and, conversely, every ideal of $S$ is of this form.

## Question

Let $S=\left\lceil Y: B_{\sim}, \phi_{a}\right]$ be a dual weak brace

$$
\text { Is } \operatorname{Soc}(S)=\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right] \text { ? }
$$

$\square$

## Ideals of dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $I_{\alpha}$ an ideal of each skew brace $B_{\alpha}$, and set $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{I_{\alpha}}$, for all $\alpha \geq \beta$. If $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then $I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]$ is an ideal of $S$ and, conversely, every ideal of $S$ is of this form.

## Question

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace.
$\square$

## Ideals of dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $I_{\alpha}$ an ideal of each skew brace $B_{\alpha}$, and set $\psi_{\alpha, \beta}:=\phi_{\alpha,\left.\beta\right|_{\alpha}}$, for all $\alpha \geq \beta$.
If $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then $I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]$ is an ideal of $S$ and, conversely, every ideal of $S$ is of this form.

## Question

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace.
Is $\operatorname{Soc}(S)=\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right]$ ?

In general, the answer is negative. For instance, example with
$Y=\{\alpha, \beta\}$, with $\alpha>\beta, B_{\alpha}=C_{3}$, and $-B_{\beta}=$ Sym $_{3}$, we have that
$\operatorname{Soc}\left(B_{\alpha}\right) \cup \operatorname{Soc}\left(B_{\beta}\right)$ is not an ideal of $S$.

## Ideals of dual weak braces

## Theorem

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace, $I_{\alpha}$ an ideal of each skew brace $B_{\alpha}$, and set $\psi_{\alpha, \beta}:=\left.\phi_{\alpha, \beta}\right|_{\left.\right|_{\alpha}}$, for all $\alpha \geq \beta$.
If $\phi_{\alpha, \beta}\left(I_{\alpha}\right) \subseteq I_{\beta}$, for any $\alpha>\beta$, then $I=\left[Y ; I_{\alpha} ; \psi_{\alpha, \beta}\right]$ is an ideal of $S$ and, conversely, every ideal of $S$ is of this form.

## Question

Let $S=\left[Y ; B_{\alpha} ; \phi_{\alpha, \beta}\right]$ be a dual weak brace.

$$
\text { Is } \operatorname{Soc}(S)=\left[Y ; \operatorname{Soc}\left(B_{\alpha}\right) ; \psi_{\alpha, \beta}\right] \text { ? }
$$

In general, the answer is negative. For instance, in the example with $Y=\{\alpha, \beta\}$, with $\alpha>\beta, B_{\alpha}=C_{3}$, and $B_{\beta}=\operatorname{Sym}_{3}$, we have that $\operatorname{Soc}\left(B_{\alpha}\right) \cup \operatorname{Soc}\left(B_{\beta}\right)$ is not an ideal of $S$.

## Some references

F. Catino, I. Colazzo, P. Stefanelli: Semi-braces and the Yang-Baxter equation, J. Algebra 483 (2017) 163-187
L. F. Catino, I. Colazzo, P. Stefanelli: Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces, Forum Math., 33 (2021), no. 3, 757-772
F. Catino, M. Mazzotta, P. Stefanelli: Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation, J. Algebra 622 (2023) 587-613 - F. Catino, M. Mazzotta, M.M. Miccoli, P. Stefanelli: Solutions of the Yang-Baxter equation associated to weak braces, Semigroup Forum 104(2) (2022) 228-255
F. Catino, M. Mazzotta, P. Stefanelli: Strong semilattices of skew braces, in preparation

- F. Catino, M. Mazzotta, P. Stefanelli: Inverse semi-braces and the Yang-Baxter equation, J. Algebra 573(3) (2021) 576-619
E. E. Jespers, A. Van Antwerpen: Left semi-braces and the Yang-Baxter equation, Forum Math. 31(1) (2019) 241-263
E A. Koch, P. J. Truman: Opposite skew left braces and applications, J. Algebra 546 (2020) 218-235
L. Guarnieri, L. Vendramin: Skew braces and the Yang-Baxter equation, Math.

Comp. 86(307), (2017) 2519-2534
W. Wump: Braces, radical rings, and the quantum Yang-Baxter equation, J.

Algebra 307(1) (2007) 153-170

## Thank you!


[^0]:    Then, $S=\bigcup\left\{B_{\alpha} \mid \alpha \in Y\right\}$ endowed with the operation given by

