Strong semilattices of skew braces

Marzia Mazzotta

Università del Salento Joint work with Francesco Catino and Paola Stefanelli

Groups, Rings and the Yang-Baxter equation 2023 20th June 2023, Blankenberge

Solutions of the Yang-Baxter equation

If S is a set, a map $r: S \times S \longrightarrow S \times S$ satisfying the braid relation

 $(r \times id_S)(id_S \times r)(r \times id_S) = (id_S \times r)(r \times id_S)(id_S \times r)$

is called *set-theoretic solution*, or briefly *solution*, of the Yang-Baxter equation.

For a solution r, we introduce two maps $\lambda_a, \rho_b: S \rightarrow S$ and write

 $r(a,b) = (\lambda_a(b), \rho_b(a)),$

for all $a, b \in S$. In particular, the solution r is said to by

- left non-degenerate if λ_a is bijective, for every a
- right non-degenerate if pb is bijective, for every b < S;</p>
- non-degenerate if r is both left and right non-degenerate.

Solutions of the Yang-Baxter equation

If S is a set, a map $r: S \times S \longrightarrow S \times S$ satisfying the braid relation

 $(r \times id_S)(id_S \times r)(r \times id_S) = (id_S \times r)(r \times id_S)(id_S \times r)$

is called *set-theoretic solution*, or briefly *solution*, of the Yang-Baxter equation.

For a solution *r*, we introduce two maps $\lambda_a, \rho_b : S \rightarrow S$ and write

 $r(a,b) = (\lambda_a(b), \rho_b(a)),$

for all $a, b \in S$. In particular, the solution r is said to be

- *left non-degenerate* if λ_a is bijective, for every $a \in S$;
- *right non-degenerate* if ρ_b is bijective, for every $b \in S$;
- non-degenerate if r is both left and right non-degenerate.

Solutions associated to skew braces

[Rump, 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of *brace*. Interesting generalizations have been produced over the years.

[Rump, 2007 - Guarnieri, Vendramin, 2017]

A triple $(B, +, \circ)$ is called *skew brace* if (B, +) and (B, \circ) are groups and it holds

 $\forall a, b, c \in B$ $a \circ (b + c) = a \circ b - a + a \circ c.$

If (B, +) is abelian, then $(B, +, \circ)$ is a *brace*.

Any skew brace B gives rise to a non-degenerate bijective solution

$$r_B(a,b) = (-a + a \circ b, (-a + a \circ b)) \circ a \circ b$$

that is *involutive*, i.e., $r^2 = id_{B \times B}$, if and only if $(B, +, \circ)$ is a brace.

Solutions associated to skew braces

[Rump, 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of *brace*. Interesting generalizations have been produced over the years.

[Rump, 2007 - Guarnieri, Vendramin, 2017]

A triple $(B, +, \circ)$ is called *skew brace* if (B, +) and (B, \circ) are groups and it holds

 $\forall a, b, c \in B$ $a \circ (b + c) = a \circ b - a + a \circ c.$

If (B, +) is abelian, then $(B, +, \circ)$ is a *brace*.

Any skew brace B gives rise to a *non-degenerate bijective solution*

 $r_B(a,b) = (-a + a \circ b, (-a + a \circ b) \circ a \circ b)$

that is *involutive*, i.e., $r^2 = id_{B \times B}$, if and only if $(B, +, \circ)$ is a brace.

Solutions associated to skew braces

[Rump, 2007] traced a novel research direction for finding solutions by introducing the algebraic structure of *brace*. Interesting generalizations have been produced over the years.

[Rump, 2007 - Guarnieri, Vendramin, 2017]

A triple $(B, +, \circ)$ is called *skew brace* if (B, +) and (B, \circ) are groups and it holds

$$\forall a, b, c \in B$$
 $a \circ (b + c) = a \circ b - a + a \circ c.$

If (B, +) is abelian, then $(B, +, \circ)$ is a *brace*.

Any skew brace *B* gives rise to a *non-degenerate bijective solution*

$$r_B(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b)$$

that is *involutive*, i.e., $r^2 = id_{B \times B}$, if and only if $(B, +, \circ)$ is a brace.

If $(B, +, \circ)$ is a skew brace, one can consider the skew brace

 $B^{op} = (B, +^{op}, \circ)$

with $a + {}^{op} b = b + a$, called the *opposite skew brace* of $(B, +, \circ)$.

As shown by **[Koch, Truman, 2020]**, considered the solution $r_{B^{op}}$ associated to the skew brace B^{op}

$$r_{B^{op}}(a,b) = (a \circ b - a, (a \circ b - a)^{-} \circ a \circ b),$$

one has that

$$r_B^{-1} = r_{B^{op}}.$$

If $(B, +, \circ)$ is a skew brace, one can consider the skew brace

$$B^{op} = (B, +^{op}, \circ)$$

with $a + {}^{op} b = b + a$, called the *opposite skew brace* of $(B, +, \circ)$.

As shown by **[Koch, Truman, 2020]**, considered the solution $r_{B^{op}}$ associated to the skew brace B^{op}

$$r_{B^{op}}(a,b) = (a \circ b - a, (a \circ b - a)^{-} \circ a \circ b),$$

one has that

$$r_B^{-1}=r_{B^{op}}.$$

Semi-braces

[Catino, Colazzo, Stefanelli, 2017]

A *(left cancellative) semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a left cancellative semigroup, (S, \circ) is a group, and

 $\forall a, b, c \in S \qquad a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$

where a^- denotes the inverse of *a* with respect to \circ .

Every skew brace $(B, +, \circ)$ is a (left cancellative) semi-brace since

 $\mathbf{a} \circ (\mathbf{a}^- + \mathbf{c}) = -\mathbf{a} + \mathbf{a} \circ \mathbf{c},$

for all *a*, *c* ∈ *B*.

If $(S, +, \circ)$ is a (left cancellative) semi-brace, the maj

$$r_{S}(a,b) = (a \circ (a + b), (a + b)^{-} \circ b)$$

is a left non-degenerate solution.

Semi-braces

[Catino, Colazzo, Stefanelli, 2017]

A *(left cancellative) semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a left cancellative semigroup, (S, \circ) is a group, and

 $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$

where a^- denotes the inverse of *a* with respect to \circ .

Every skew brace $(B, +, \circ)$ is a (left cancellative) semi-brace since

 $\boldsymbol{a}\circ(\boldsymbol{a}^{-}+\boldsymbol{c})=-\boldsymbol{a}+\boldsymbol{a}\circ\boldsymbol{c},$

for all $a, c \in B$.

If $(S, +, \circ)$ is a (left cancellative) semi-brace, the ma

 $r_{S}(a,b) = (a \circ (a + b), (a + b) \circ b)$

is a left non-degenerate solution.

Semi-braces

[Catino, Colazzo, Stefanelli, 2017]

A *(left cancellative) semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a left cancellative semigroup, (S, \circ) is a group, and

 $\forall a, b, c \in S \qquad a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$

where a^- denotes the inverse of *a* with respect to \circ .

Every skew brace $(B, +, \circ)$ is a (left cancellative) semi-brace since

$$\boldsymbol{a}\circ(\boldsymbol{a}^{-}+\boldsymbol{c})=-\boldsymbol{a}+\boldsymbol{a}\circ\boldsymbol{c},$$

for all $a, c \in B$.

If $(S, +, \circ)$ is a (left cancellative) semi-brace, the map

$$r_{S}(a,b) = \left(a \circ (a^{-} + b), (a^{-} + b)^{-} \circ b\right)$$

is a left non-degenerate solution.

[Jespers, Van Antwerpen, 2019]

A *semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a semigroup, (S, \circ) is a group, and

 $\forall a, b, c \in S \qquad a \circ (b + c) = a \circ b + a \circ (a^- + c).$

[Catino, Colazzo, Stefanelli, 2020] showed that the map is given b

$$r_{S}(a,b) = (a \circ (a^{-} + b), (a^{-} + b)^{-} \circ b)$$

is a solution if and only if

 $\forall a, b, x \in S \qquad x + a \circ (0 + b) = a + \lambda_a(b) \circ (0 + p_b(a)),$

where 0 is the identity of (S, \circ) .

[Jespers, Van Antwerpen, 2019]

A semi-brace is a triple $(S,+,\circ)$ such that (S,+) is a semigroup, (S,\circ) is a group, and

 $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b + a \circ (a^{-} + c).$

[Catino, Colazzo, Stefanelli, 2020] showed that the map r_S given by

$$r_{S}(a,b) = (a \circ (a^{-} + b), (a^{-} + b)^{-} \circ b)$$

is a solution if and only if

$$\forall a, b, x \in S \qquad x + a \circ (0 + b) = a + \lambda_a(b) \circ (0 + \rho_b(a)),$$

where 0 is the identity of (S, \circ) .

[Jespers, Van Antwerpen, 2019]

A semi-brace is a triple $(S,+,\circ)$ such that (S,+) is a semigroup, (S,\circ) is a group, and

 $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b + a \circ (a^{-} + c).$

[Catino, Colazzo, Stefanelli, 2020] showed that the map r_S given by

$$r_{\mathcal{S}}(a,b) = (a \circ (a^{-} + b), (a^{-} + b)^{-} \circ b)$$

is a solution if and only if

$$\forall a, b, x \in S \qquad x + a \circ (0 + b) = a + \lambda_a(b) \circ (0 + \rho_b(a)),$$

where 0 is the identity of (S, \circ) .

[Catino, M., Stefanelli, 2021]

An *inverse semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a semigroup, (S, \circ) is an inverse semigroup, and

 $\forall a, b, c \in S \qquad a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$

where a^- denotes the inverse of *a* with respect to the \circ .

A semigroup (S, \circ) is called *inverse* if, for each $a \in S$, there exists a unique $a^- \in S$ satisfying

$$a \circ a^{-} \circ a = a$$
 and $a^{-} \circ a \circ a^{-} = a^{-}$.

Every group is an inverse semigroup and the idempotent elements commute each other.

Under suitable conditions, the map r_S associated to an inverse semi-brace $(S, +, \circ)$ is a solution.

[Catino, M., Stefanelli, 2021]

An *inverse semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a semigroup, (S, \circ) is an *inverse semigroup*, and

 $\forall a, b, c \in S \qquad a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$

where a^- denotes the inverse of *a* with respect to the \circ .

A semigroup (S, \circ) is called *inverse* if, for each $a \in S$, there exists a unique $a^- \in S$ satisfying

$$a \circ a^- \circ a = a$$
 and $a^- \circ a \circ a^- = a^-$.

Every group is an inverse semigroup and the idempotent elements commute each other.

Under suitable conditions, the map r_S associated to an inverse semi-brace $(S, +, \circ)$ is a solution.

[Catino, M., Stefanelli, 2021]

An *inverse semi-brace* is a triple $(S, +, \circ)$ such that (S, +) is a semigroup, (S, \circ) is an inverse semigroup, and

 $\forall a, b, c \in S \qquad a \circ (b + c) = a \circ b + a \circ (a^{-} + c),$

where a^- denotes the inverse of *a* with respect to the \circ .

A semigroup (S, \circ) is called *inverse* if, for each $a \in S$, there exists a unique $a^- \in S$ satisfying

 $a \circ a^- \circ a = a$ and $a^- \circ a \circ a^- = a^-$.

Every group is an inverse semigroup and the idempotent elements commute each other.

Under suitable conditions, the map r_S associated to an inverse semi-brace $(S, +, \circ)$ is a solution.

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ (b + c) = a \circ b a + a \circ c,$
- $\forall a \in S \qquad a \circ a^- = -a + a,$

where -a and purple a^{-} denote the inverses of (S, +) and (S, \circ) .

Every weak brace $(S, +, \circ)$ is an inverse semi-brace since

 $\forall a, c \in S$ $a \circ (a^- + c) = -a + a \circ c.$

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ (b + c) = a \circ b a + a \circ c,$
- $\forall a \in S \qquad a \circ a^{-} = -a + a,$

where -a and purple a^{-} denote the inverses of (S, +) and (S, \circ) .

Every weak brace $(S, +, \circ)$ is an inverse semi-brace since

 $\forall a, c \in S$ $a \circ (a^- + c) = -a + a \circ c.$

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S$ $a \circ (b + c) = a \circ b a + a \circ c$,
- $\forall a \in S \qquad a \circ a^- = -a + a,$

where -a and purple a^{-} denote the inverses of (S, +) and (S, \circ) .

Every weak brace $(S, +, \circ)$ is an inverse semi-brace since

$$\forall a, c \in S$$
 $a \circ (a^- + c) = -a + a \circ c.$

Definition (Catino, M., Miccoli, Stefanelli, 2022)

A weak brace is a triple $(S, +, \circ)$ such that (S, +) and (S, \circ) are inverse semigroups satisfying

- $\forall a, b, c \in S \quad a \circ (b + c) = a \circ b a + a \circ c,$
- $\forall a \in S \qquad a \circ a^- = -a + a,$

where -a and purple a^{-} denote the inverses of (S, +) and (S, \circ) .

Every weak brace $(S, +, \circ)$ is an inverse semi-brace since

$$\forall a, c \in S$$
 $a \circ (a^- + c) = -a + a \circ c.$

Idempotents of weak braces

In any weak brace $E(S, +) = E(S, \circ)$ thus we will simply write E(S). As a consequence, if |E(S)| = 1, then S is a skew brace.

Key Lemma

Let $(S, +, \circ)$ be a weak brace. Then, it holds

 $e + a = e \circ a$,

for all $e \in E(S)$ and $a \in S$.

In particular, E(S) also is a (trivial) weak brace.

Idempotents of weak braces

In any weak brace $E(S, +) = E(S, \circ)$ thus we will simply write E(S). As a consequence, if |E(S)| = 1, then S is a skew brace.

Key Lemma

Let $(S, +, \circ)$ be a weak brace. Then, it holds

 $e + a = e \circ a$,

for all $e \in E(S)$ and $a \in S$.

In particular, E(S) also is a (trivial) weak brace.

Solutions associated to weak braces

If $(S, +, \circ)$ is a weak brace, then the map

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b),$$

for all $a, b \in S$, is a solution that has a *behaviour close to bijectivity*.

Given a weak brace $(S, +, \circ)$, we can consider its opposite weak brace that is $S^{op} = (S, +^{op}, \circ)$, with $a + ^{op} b = b + a$, for all $a, b \in S$.

The solution $r_{S^{op}}$ associated to the opposite weak brace S^{op} of S is such that

$$r_S r_{S^{op}} r_s = r_S, \quad r_{S^{op}} r_S r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_S r_{S^{op}} = r_{S^{op}} r_S.$$

Hence, r_s is a completely regular element of Map $(S \times S)$.

Solutions associated to weak braces

If $(S, +, \circ)$ is a weak brace, then the map

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b),$$

for all $a, b \in S$, is a solution that has a *behaviour close to bijectivity*.

Given a weak brace $(S, +, \circ)$, we can consider its *opposite weak brace* that is $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$.

The solution $r_{S^{op}}$ associated to the opposite weak brace S^{op} of S is such that

$$r_S r_{S^{op}} r_s = r_S, \quad r_{S^{op}} r_S r_{S^{op}} = r_{S^{op}}, \quad \text{and} \quad r_S r_{S^{op}} = r_{S^{op}} r_S.$$

Hence, r_s is a completely regular element of Map $(S \times S)$.

Solutions associated to weak braces

If $(S, +, \circ)$ is a weak brace, then the map

$$r_{S}(a,b) = (-a + a \circ b, (-a + a \circ b)^{-} \circ a \circ b),$$

for all $a, b \in S$, is a solution that has a *behaviour close to bijectivity*.

Given a weak brace $(S, +, \circ)$, we can consider its *opposite weak brace* that is $S^{op} = (S, +^{op}, \circ)$, with $a +^{op} b = b + a$, for all $a, b \in S$.

The solution $r_{S^{op}}$ associated to the opposite weak brace S^{op} of S is such that

$$r_S r_{S^{op}} r_s = r_S$$
, $r_{S^{op}} r_S r_{S^{op}} = r_{S^{op}}$, and $r_S r_{S^{op}} = r_{S^{op}} r_S$.

Hence, r_s is a completely regular element of $M_{ap}(S \times S)$.

Theorem

Let $(S, +, \circ)$ be a weak brace. Then, (S, +) is a Clifford semigroup.

An inverse semigroup *S* is a *Clifford semigroup* if it has central idempotents.

Generally, (S, \circ) is not a Clifford semigroup.

Example

Let $X := \{1, x, y\}$, *S* the upper semilattice on *X* with join 1, and *T* the commutative inverse monoid on *X* with identity 1 such that xx = yy = x and xy = y. Consider the trivial weak braces on *S* and *T*. Let $\tau := (xy) \in Aut(S)$ and $\sigma : T \to Aut(S)$ defined by $\sigma(1) = \sigma(x) = id_S$ and $\sigma(y) = \tau$. Then, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford, since

 $(y, y) \circ (y, y)^{-} = (y, x) \& (y, y)^{-} \circ (y, y) = (x, x).$

Theorem

Let $(S, +, \circ)$ be a weak brace. Then, (S, +) is a Clifford semigroup.

An inverse semigroup *S* is a *Clifford semigroup* if it has central idempotents.

Generally, (S, \circ) is not a Clifford semigroup.

Example

Let $X := \{1, x, y\}$, *S* the upper semilattice on *X* with join 1, and *T* the commutative inverse monoid on *X* with identity 1 such that xx = yy = x and xy = y. Consider the trivial weak braces on *S* and *T*. Let $\tau := (xy) \in Aut(S)$ and $\sigma : T \to Aut(S)$ defined by $\sigma(1) = \sigma(x) = id_S$ and $\sigma(y) = \tau$. Then, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford, since

 $(y,y)\circ(y,y)^-=(y,x)\quad \&\quad (y,y)^-\circ(y,y)=(x,x).$

Theorem

Let $(S, +, \circ)$ be a weak brace. Then, (S, +) is a Clifford semigroup.

An inverse semigroup *S* is a *Clifford semigroup* if it has central idempotents.

Generally, (S, \circ) is not a Clifford semigroup.

Example

Let $X := \{1, x, y\}$, *S* the upper semilattice on *X* with join 1, and *T* the commutative inverse monoid on *X* with identity 1 such that xx = yy = x and xy = y. Consider the trivial weak braces on *S* and *T*. Let $\tau := (xy) \in Aut(S)$ and $\sigma : T \to Aut(S)$ defined by $\sigma(1) = \sigma(x) = id_S$ and $\sigma(y) = \tau$. Then, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford, since

 $(y,y) \circ (y,y)^{-} = (y,x) \& (y,y)^{-} \circ (y,y) = (x,x).$

Theorem

Let $(S, +, \circ)$ be a weak brace. Then, (S, +) is a Clifford semigroup.

An inverse semigroup *S* is a *Clifford semigroup* if it has central idempotents.

Generally, (S, \circ) is not a Clifford semigroup.

Example

Let $X := \{1, x, y\}$, *S* the upper semilattice on *X* with join 1, and *T* the commutative inverse monoid on *X* with identity 1 such that xx = yy = x and xy = y. Consider the trivial weak braces on *S* and *T*. Let $\tau := (xy) \in Aut(S)$ and $\sigma : T \rightarrow Aut(S)$ defined by $\sigma(1) = \sigma(x) = id_S$ and $\sigma(y) = \tau$. Then, $S \rtimes_{\sigma} T$ is a weak brace such that $(S \times T, \circ)$ is not Clifford, since

$$(y, y) \circ (y, y)^{-} = (y, x) \& (y, y)^{-} \circ (y, y) = (x, x).$$

Weak braces coming from RB-operators

Examples of weak brace having can be obtained by using Rota-Baxter operators:

Definition (Catino, M., Stefanelli, 2023)

If (S, +) is a Clifford semigroup, any map $\mathfrak{R}: S \to S$ satisfying

$$\forall a, b \in S \qquad \mathfrak{R}(a) + \mathfrak{R}(b) = \mathfrak{R}(a + \mathfrak{R}(a) + b - \mathfrak{R}(a))$$
$$a + \mathfrak{R}(a) - \mathfrak{R}(a) = a$$

is called *Rota–Baxter operator* on (S, +).

Let \mathfrak{R} an RB-operator on a Clifford semigroup (S, +). Set

 $\forall a, b \in S \qquad a \circ_{\Re} b \coloneqq a + \Re(a) + b - \Re(a),$

then $(S, +, \circ_{\Re})$ is a weak brace such that (S, \circ_{\Re}) is a Clifford semigroup.

Weak braces coming from RB-operators

Examples of weak brace having can be obtained by using Rota-Baxter operators:

Definition (Catino, M., Stefanelli, 2023)

If (S, +) is a Clifford semigroup, any map $\mathfrak{R}: S \to S$ satisfying

$$\forall a, b \in S \qquad \Re(a) + \Re(b) = \Re(a + \Re(a) + b - \Re(a))$$
$$a + \Re(a) - \Re(a) = a$$

is called *Rota–Baxter operator* on (S, +).

Let \mathfrak{R} an RB-operator on a Clifford semigroup (S, +). Set

$$\forall a, b \in S \qquad a \circ_{\Re} b \coloneqq a + \Re(a) + b - \Re(a),$$

then $(S, +, \circ_{\mathfrak{R}})$ is a weak brace such that $(S, \circ_{\mathfrak{R}})$ is a Clifford semigroup.

Dual weak braces

Definition

A weak brace $(S,+,\circ)$ is called dual weak brace if (S,\circ) is a Clifford semigroup.

If $(S, +, \circ)$ is a dual weak brace, the solution r_S has a so a *behaviour* close to the non-degeneracy in the sense that

for every $a \in S$.

Dual weak braces

Definition

A weak brace $(S, +, \circ)$ is called dual weak brace if (S, \circ) is a Clifford semigroup.

If $(S, +, \circ)$ is a dual weak brace, the solution r_S has also a *behaviour close to the non-degeneracy* in the sense that

$\lambda_a \lambda_{a^-} \lambda_a = \lambda_a,$	$\lambda_{a^-}\lambda_a\lambda_{a^-}=\lambda_{a^-},$	and	$\lambda_a \lambda_{a^-} = \lambda_{a^-} \lambda_a$
$\rho_a \rho_{a^-} \rho_a = \rho_a,$	$\rho_{a^-}\rho_a\rho_{a^-}=\rho_{a^-},$	and	$\rho_a \rho_{a^-} = \rho_{a^-} \rho_a$

for every $a \in S$.

Strong semilattice of skew braces

Let us consider the following:

- Y a (lower) semilattice;
- $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces;
- ► For each pair α, β of elements of β such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha,\alpha}$ is the identical automorp ism of B_{α} , for every $\alpha \in Y$; 2. $\phi_{\beta,\alpha}\phi_{\alpha,\beta} = \phi_{\alpha,\alpha}$ if $\alpha \ge \beta \ge \alpha$.

Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with the operation given by

 $\forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$ $a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$

s a dual weak brace.

Strong semilattice of skew braces

Let us consider the following:

- Y a (lower) semilattice;
- $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces;
- ► For each pair α, β of elements of β such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha,\alpha}$ is the identical automorp ism of B_{α} , for every $\alpha \in Y$;

Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with the operation given by

 $\forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$ $a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$

s a dual weak brace.

13

Let us consider the following:

- Y a (lower) semilattice;
- $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces;
- For each pair α, β of elements of Y such that α ≥ β, let φ_{α,β} : B_α → B_β be a homomorphism of skew braces such that

1. $\phi_{\alpha,\alpha}$ is the identical automorphism of B_{α} , for every $\alpha \in Y$;

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$ if $\alpha \ge \beta \ge \gamma$.

Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with the operation given by

 $\forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$ $a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$

s a dual weak brace.

13

Let us consider the following:

- Y a (lower) semilattice;
- $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces;
- For each pair α, β of elements of Y such that α ≥ β, let φ_{α,β} : B_α → B_β be a homomorphism of skew braces such that

1. $\phi_{\alpha,\alpha}$ is the identical automorphism of B_{α} , for every $\alpha \in Y$;

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$ if $\alpha \ge \beta \ge \gamma$.

Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with the operation given by

$$\forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$$
$$a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$$

is a dual weak brace.

Let us consider the following:

- Y a (lower) semilattice;
- $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces;
- For each pair α, β of elements of Y such that α ≥ β, let φ_{α,β} : B_α → B_β be a homomorphism of skew braces such that

 φ_{α,α} is the identical automorphism of B_α, for every α ∈ Y;
φ_{β,γ}φ_{α,β} = φ_{α,γ} if α ≥ β ≥ γ.

Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with the operation given by

$$\forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$$
$$a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$$

is a dual weak brace.

Marzia Mazzotta (Università del Salento) | Strong semilattices of skew braces

Theorem (Catino, M., Stefanelli, 2023)

Let *Y* be a (lower) semilattice, $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces. For each $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a homomorphism of skew braces such that

1.
$$\phi_{\alpha,\alpha} \operatorname{id}_{B_{\alpha}}$$
, for every $\alpha \in Y$,

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \ge \beta \ge \gamma$. Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with

 $a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$ and $a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$,

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace. Conversely, any dual weak brace is a strong semilattice of skew braces.

Theorem (Catino, M., Stefanelli, 2023)

Let *Y* be a (lower) semilattice, $\{B_{\alpha} \mid \alpha \in Y\}$ a family of disjoint skew braces. For each $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, let $\phi_{\alpha,\beta} : B_{\alpha} \to B_{\beta}$ be a homomorphism of skew braces such that

1. $\phi_{\alpha,\alpha} \operatorname{id}_{B_{\alpha}}$, for every $\alpha \in Y$,

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \ge \beta \ge \gamma$. Then, $S = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$ endowed with

 $a + b \coloneqq \phi_{\alpha,\alpha\beta}(a) + \phi_{\beta,\alpha\beta}(b)$ and $a \circ b \coloneqq \phi_{\alpha,\alpha\beta}(a) \circ \phi_{\beta,\alpha\beta}(b)$,

for all $a \in B_{\alpha}$ and $b \in B_{\beta}$, is a dual weak brace. Conversely, any dual weak brace is a strong semilattice of skew braces.

An easy example

 $id_{B_{\alpha}}$

Q

 B_{α}

 $\phi_{\alpha,\beta}$

 $B_{\beta} \supset \mathrm{id}_{B_{\beta}}$

15

Let us consider:

- $Y = \{\alpha, \beta\}$, with $\alpha > \beta$,
- B_{α} the trivial skew brace on the cyclic group C_3 ,
- B_β the trivial skew brace on the symmetric group Sym₃
- $\phi_{\alpha,\beta}: C_3 \rightarrow \text{Sym}_3$ the homomorphism given by $\phi_{\alpha,\beta}(0) = \text{id}_3, \phi_{\alpha,\beta}(1) = (123), \phi_{\alpha,\beta}(2) = (132).$

Then, $S = B_{\alpha} \bigcup B_{\beta}$ endowed with the operation given by

 $\forall a \in B_{\alpha}, b \in B_{\beta} \quad a + b \coloneqq \phi_{\alpha,\beta}(a) + \phi_{\beta,\beta}(b) \\ a \circ b \coloneqq \phi_{\alpha,\beta}(a) \circ \phi_{\beta,\beta}(b)$

is a (not trivial) dual weak brace.

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

- [Cedó, 2018], [Vendramin, 2019] pose the problem c computing the automorphism groups of skew braces of size pⁿ
- [Zenouz, 2019] determines the automorphism group of skew braces of order p > 3
- [Puljić, Smoktunowicz, Zenouz, 2022] describe F_p b aces of cardinality p⁴ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence concerning automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic F₂-braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size pⁿ
- [Zenouz, 2019] determines the automorphism group of skew braces of order p > 3
- [Puljić, Smoktunowicz, Zenouz, 2022] describe F_p b aces of cardinality p⁴ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence conceeding automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic F₂-braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size pⁿ
- [Zenouz, 2019] determines the automorphism group of skew braces of order p > 3
- [Puljić, Smoktunowicz, Zenouz, 2022] describe 𝔽_p b aces of cardinality p⁴ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence conceeding automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic F₂-braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size pⁿ
- [Zenouz, 2019] determines the automorphism group of skew braces of order p > 3
- ► [Puljić, Smoktunowicz, Zenouz, 2022] describe F_p-braces of cardinality p⁴ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence connecting automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic F₂-braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size pⁿ
- [Zenouz, 2019] determines the automorphism group of skew braces of order p > 3
- ► [Puljić, Smoktunowicz, Zenouz, 2022] describe 𝔽_p-braces of cardinality p⁴ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence connecting automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic F₂-braces

Problem

Finding homomorphism between skew braces for constructing dual weak braces.

- [Cedó, 2018], [Vendramin, 2019] pose the problem of computing the automorphism groups of skew braces of size pⁿ
- [Zenouz, 2019] determines the automorphism group of skew braces of order p > 3
- ► [Puljić, Smoktunowicz, Zenouz, 2022] describe 𝔽_p-braces of cardinality p⁴ which are not right nilpotent
- [Rathee, Yadav, 2023] present an exact sequence connecting automorphism groups of skew braces with the second cohomology group acting on a trivial brace with non-trivial actions
- [Civino, Fedele, Gavioli, 2023] are interested in finding isomorphic \mathbb{F}_2 -braces

Strong semilattice of solutions

Theorem (Catino, Colazzo, Stefanelli, 2021)

Let *Y* be a (lower) semilattice, $\{r_{\alpha} \mid \alpha \in Y\}$ a family of disjoint solutions on X_{α} indexed by *Y* such that for each $\alpha \ge \beta$ there is a map $\phi_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$. Let $X = \bigcup \{X_{\alpha} \mid \alpha \in Y\}$ and $r : X \times X \longrightarrow X \times X$ be the map defined as

$$r(\mathbf{x},\mathbf{y}) \coloneqq r_{\alpha\beta} \left(\phi_{\alpha,\alpha\beta} \left(\mathbf{x} \right), \phi_{\beta,\alpha\beta} \left(\mathbf{y} \right) \right),$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$. If the following conditions are satisfied:

1. $\phi_{\alpha,\alpha}$ is the identity map of X_{α} , for every $\alpha \in Y$,

2. $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \ge \beta \ge \gamma$,

3. $(\phi_{\alpha,\beta} \times \phi_{\alpha,\beta}) r_{\alpha} = r_{\beta} (\phi_{\alpha,\beta} \times \phi_{\alpha,\beta})$, for all $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, then *r* is a solution on *X*, called strong semilattice of the solutions r_{α} .

Strong semilattice of solutions

Theorem (Catino, Colazzo, Stefanelli, 2021)

Let *Y* be a (lower) semilattice, $\{r_{\alpha} \mid \alpha \in Y\}$ a family of disjoint solutions on X_{α} indexed by *Y* such that for each $\alpha \ge \beta$ there is a map $\phi_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$. Let $X = \bigcup \{X_{\alpha} \mid \alpha \in Y\}$ and $r : X \times X \longrightarrow X \times X$ be the map defined as

$$r(\mathbf{x},\mathbf{y}) \coloneqq r_{\alpha\beta} \left(\phi_{\alpha,\alpha\beta} \left(\mathbf{x} \right), \phi_{\beta,\alpha\beta} \left(\mathbf{y} \right) \right),$$

for all $x \in X_{\alpha}$ and $y \in X_{\beta}$. If the following conditions are satisfied:

- 1. $\phi_{\alpha,\alpha}$ is the identity map of X_{α} , for every $\alpha \in Y$,
- **2.** $\phi_{\beta,\gamma}\phi_{\alpha,\beta} = \phi_{\alpha,\gamma}$, for all $\alpha, \beta, \gamma \in Y$ such that $\alpha \ge \beta \ge \gamma$,

3. $(\phi_{\alpha,\beta} \times \phi_{\alpha,\beta}) r_{\alpha} = r_{\beta} (\phi_{\alpha,\beta} \times \phi_{\alpha,\beta})$, for all $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, then *r* is a solution on *X*, called strong semilattice of the solutions r_{α} .

The solutions coming from dual weak braces

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α} .

Corollary

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a *finite* dual weak brace and r the solution associated to S. Then, $r^{2k+1} = r$ with $2k = \operatorname{lcm}\{p(r_{\alpha}) \mid \alpha \in Y\}$.

Consequently, the solution *r* associated to a finite dot weak brace $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ is cubic, i.e., $r^3 = r$, if and only if α is involutive, i.e., $r_{\alpha}^2 = \operatorname{id}_{B_{\alpha} \times B_{\alpha}}$, that is each B_{α} is a brace.

The solutions coming from dual weak braces

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α} .

Corollary

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a *finite* dual weak brace and *r* the solution associated to *S*. Then, $r^{2k+1} = r$ with $2k = \operatorname{lcm}\{p(r_{\alpha}) \mid \alpha \in Y\}$.

Consequently, the solution *r* associated to a finite dual weak brace $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ is cubic, i.e., $r^3 = r$, if and only if α is involutive, i.e., $r^2 = id_{B_{\alpha} \times B_{\alpha}}$, that is each B_{α} is a brace.

The solutions coming from dual weak braces

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace. Then, the solution r associated to S is the strong semilattice of the bijective non-degenerate solutions r_{α} associated to each skew brace B_{α} .

Corollary

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a *finite* dual weak brace and *r* the solution associated to *S*. Then, $r^{2k+1} = r$ with $2k = \operatorname{lcm}\{p(r_{\alpha}) \mid \alpha \in Y\}$.

Consequently, the solution *r* associated to a finite dual weak brace $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ is cubic, i.e., $r^3 = r$, if and only if r_{α} is involutive, i.e., $r_{\alpha}^2 = id_{B_{\alpha} \times B_{\alpha}}$, that is each B_{α} is a brace.

Definition

A subset *I* of a dual weak brace *S* is an *ideal* of $(S, +, \circ)$ if

- 1. *I* is a normal subsemigroup of (S, +),
- **2.** $\lambda_a(I) \subseteq I$, for every $a \in S$,
- **3.** *I* is a normal subsemigroup of (S, \circ) .

If I is an ideal, the relation \sim_I on S given by

 $\forall a, b \in S \ a \sim b \iff a - a = b - b \text{ and } - a + b$

is a congruence of $(S, +, \circ)$.

Example

The set $Soc(S) = \{a | a \in S, \forall b \in S \ a+b = a \circ b \ and \ a+b = b+a\}$ is an ideal of any dual weak brace $(S, +, \circ)$ called *socle* of *S*.

Definition

A subset *I* of a dual weak brace *S* is an *ideal* of $(S, +, \circ)$ if

- 1. *I* is a normal subsemigroup of (S, +),
- **2.** $\lambda_a(I) \subseteq I$, for every $a \in S$,
- **3.** *I* is a normal subsemigroup of (S, \circ) .

If *I* is an ideal, the relation \sim_I on *S* given by

 $\forall a, b \in S \quad a \sim_I b \iff a - a = b - b \text{ and } -a + b \in I,$

is a congruence of $(S, +, \circ)$.

Example

The set $Soc(S) = \{a | a \in S, \forall b \in S \ a+b = a \circ b \ and \ a+b = b+a\}$ is an ideal of any dual weak brace $(S, +, \circ)$ called *socle* of *S*.

Definition

A subset *I* of a dual weak brace *S* is an *ideal* of $(S, +, \circ)$ if

- 1. *I* is a normal subsemigroup of (S, +),
- **2.** $\lambda_a(I) \subseteq I$, for every $a \in S$,
- **3.** *I* is a normal subsemigroup of (S, \circ) .

If *I* is an ideal, the relation \sim_I on *S* given by

 $\forall a, b \in S \quad a \sim_I b \iff a - a = b - b \text{ and } -a + b \in I,$

is a congruence of $(S, +, \circ)$.

Example

The set $Soc(S) = \{a \mid a \in S, \forall b \in S \ a+b = a \circ b \ and \ a+b = b+a\}$ is an ideal of any dual weak brace $(S, +, \circ)$ called *socle* of *S*.

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} , and set $\psi_{\alpha,\beta} \coloneqq \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$. If $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$ is an ideal of S and, conversely, every ideal of S is of this form.

Question

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace.

s Soc $(S) = [Y; Soc(B_{\alpha}); \psi_{\alpha,\beta}]?$

In general, the answer is negative. For instance in the example with $Y = \{\alpha, \beta\}$, with $\alpha > \beta$, $B_{\alpha} = C_3$, and $B_{\beta} = Sym_3$, we have that $Soc(B_{\alpha}) \cup Soc(B_{\beta})$ is not an ideal of *S*.

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} , and set $\psi_{\alpha,\beta} \coloneqq \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$. If $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$ is an ideal of S and, conversely, every ideal of S is of this form.

Question

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace.

s Soc $(S) = [Y; Soc(B_{\alpha}); \psi_{\alpha,\beta}]?$

In general, the answer is negative. For instance in the example with $Y = \{\alpha, \beta\}$, with $\alpha > \beta$, $B_{\alpha} = C_3$, and $B_{\beta} = Sym_3$, we have that $Soc(B_{\alpha}) \cup Soc(B_{\beta})$ is not an ideal of *S*.

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} , and set $\psi_{\alpha,\beta} \coloneqq \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$. If $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$ is an ideal of S and, conversely, every ideal of S is of this form.

Question

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace.

s Soc(S) = [Y; Soc(
$$B_{\alpha}$$
); $\psi_{\alpha,\beta}$]?

In general, the answer is negative. For instance in the example with $Y = \{\alpha, \beta\}$, with $\alpha > \beta$, $B_{\alpha} = C_3$, and $B_{\beta} = Sym_3$, we have that $Soc(B_{\alpha}) \cup Soc(B_{\beta})$ is not an ideal of *S*.

Theorem

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace, I_{α} an ideal of each skew brace B_{α} , and set $\psi_{\alpha,\beta} \coloneqq \phi_{\alpha,\beta}|_{I_{\alpha}}$, for all $\alpha \ge \beta$. If $\phi_{\alpha,\beta}(I_{\alpha}) \subseteq I_{\beta}$, for any $\alpha > \beta$, then $I = [Y; I_{\alpha}; \psi_{\alpha,\beta}]$ is an ideal of S and, conversely, every ideal of S is of this form.

Question

Let $S = [Y; B_{\alpha}; \phi_{\alpha,\beta}]$ be a dual weak brace.

Is
$$\operatorname{Soc}(S) = [Y; \operatorname{Soc}(B_{\alpha}); \psi_{\alpha,\beta}]?$$

In general, the answer is negative. For instance, in the example with $Y = \{\alpha, \beta\}$, with $\alpha > \beta$, $B_{\alpha} = C_3$, and $B_{\beta} = \text{Sym}_3$, we have that $\text{Soc}(B_{\alpha}) \cup \text{Soc}(B_{\beta})$ is not an ideal of *S*.

Some references

21

F. Catino, I. Colazzo, P. Stefanelli: Semi-braces and the Yang-Baxter equation, J. Algebra 483 (2017) 163–187

F. Catino, I. Colazzo, P. Stefanelli: Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces, Forum Math., 33 (2021), no. 3, 757–772

F. Catino, M. Mazzotta, P. Stefanelli: *Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation*, J. Algebra 622 (2023) 587–613

F. Catino, M. Mazzotta, M.M. Miccoli, P. Stefanelli: Solutions of the Yang-Baxter equation associated to weak braces, Semigroup Forum 104(2) (2022) 228-255

F. Catino, M. Mazzotta, P. Stefanelli: *Strong semilattices of skew braces*, in preparation

F. Catino, M. Mazzotta, P. Stefanelli: Inverse semi-braces and the Yang-Baxter equation, J. Algebra 573(3) (2021) 576-619

E. Jespers, A. Van Antwerpen: *Left semi-braces and the Yang-Baxter equation*, Forum Math. 31(1) (2019) 241-263

A. Koch, P. J. Truman: *Opposite skew left braces and applications*, J. Algebra 546 (2020) 218–235

L. Guarnieri, L. Vendramin: *Skew braces and the Yang-Baxter equation*, Math. Comp. 86(307), (2017) 2519-2534

W. Rump: *Braces, radical rings, and the quantum Yang-Baxter equation,* J. Algebra 307(1) (2007) 153-170

Thank you!

Marzia Mazzotta (Università del Salento) | Strong semilattices of skew braces