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Chern-Simons formulation of 3d gravity 3d gravity as a CS theory

Pure gravity in 3 dimensions

2 key observations about 3d GR

1 Geometry: The Weyl tensor is identically zero.
2 Einstein’s equation: The equation Rµν − 1

2gµνR + Λgµν = 0 reduces
to Rµν = 2Λgµν .

Implications for the theory

1 NO dynamical degrees of freedom.
2 (Outside sources) the spacetimes are locally of constant curvature.

Local model spacetimes and isometry groups (GΛ,c)

Λ Euclidean (c2 < 0) Lorentzian (c2 > 0)

0 E3 = ISO(3)/SO(3) M2+1 = ISO(2, 1)/SO(2, 1)

> 0 S3 = SO(4)/SO(3) dS2+1 = SO(3, 1)/SO(2, 1)

< 0 H3 = SO(3, 1)/SO(3) AdS2+1 = SO(2, 2)/SO(2, 1)
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Chern-Simons formulation of 3d gravity 3d gravity as a CS theory

Chern-Simons formulation of pure 3d gravity

Chern-Simons formulation

With the combined connection A = eaPa + ωaJa, the Chern-Simons action

SCS(A) =
k

4π

∫
M3

〈
A ∧ dA +

2

3
A ∧ A ∧ A

〉
with k =

1

4πGNewton

coincides with the Λ-Einstein-Hilbert action.

Lie algebra gΛ,c

[Ja, Jb] = εabcJ
c , [Ja,Pb] = εabcP

c , and [Pa,Pb] = (−c2Λ︸ ︷︷ ︸
λ

)εabcJ
c

Ad-invariant (standard) symmetric bilinear form

〈Ja, Jb〉 = 0, 〈Ja,Pb〉 = c2ηab and 〈Pa,Pb〉 = 0
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Classical r -matrices: Phase space of 3d (CS) gravity Phase space of CS formulation of 3d gravity

Phase space for 3d (CS) gravity?

Phase space P of CS formulation of 3d gravity

For M3
∼= R× Sg ,n, the moduli space is parametrized by the set of

holonomies along the generators of π1(Sg ,n) such that
[Ag ,B

−1
g ] · · · [A1,B

−1
1 ] ·Mn · · ·M1 = 1, modulo global conjugation.

Graphically
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Classical r -matrices: Phase space of 3d (CS) gravity Phase space of CS formulation of 3d gravity

Phase space for 3d (CS) gravity

Mathematically

The Phase space is a constrained system given by

P = Paux/GΛ,c

where

Paux = {(M1, ...,Mn,A1, ...,Bg ) ∈ Gn+2g
Λ,c |Mi ∈ Ci ,F (Mi ,Aj ,Bj) = 1}

with:
Ci fixed conjugacy classes of GΛ,c for i = 1, ..., n.

and
F (Mi ,Aj ,Bj) =

←−∏g
j=1[Bj ,A

−1
j ]
←−∏

n
i=1Mi .
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Classical r -matrices: Phase space of 3d (CS) gravity Fock-Rosly formulation of CS phase space

Poisson structure over P

Fock-Rosly (Alekseev) approach to Atiyah-Bott [92]

The Poisson structure (P,
∏

AB) could be obtained via reduction from
(Pext,Π

r
FR), where

Pext = Gn+2g
Λ,c

and

Πr
FR =

n∑
i=1

rαβ
(

1

2
RMi
α ∧ RMi

β +
1

2
LMi
α ∧ LMi

β + RMi
α ∧ LMi

β

)
+ · · ·

i.e. {F ,G} = Πr
FR(dF , dG ) with F ,G ∈ C∞(Gn+2g

Λ,c ).

Key ingredient

r = rabTa ⊗ Tb ∈ g2
Λ,c is a classical r -matrix.
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Classical dynamical r -matrices: Gauge fixing in 3d (CS) gravity Gauge fixing in CS 3d gravity

First constraining → Second Quantization

Gauge fixing the F=1 constraint

Using 6 auxiliary gauge constraints over Pext (e.g. just involving M1 and
M2), the Dirac bracket defines a Poisson space (PGF

ext ,Π
rd
FR) with

PGF
ext = R2 × Gn+2g−2

Λ,c

and Poisson structure given by F ,G ∈ C∞(Gn+2g−2
Λ,c )

{α,ψ}D = 0, {F ,G}D = Πrd
FR(dF , dG ),

{α,F}D = −(RJ0 + LJ0)F , {ψ,F}D = −(RP0 + LP0)F

Key ingredient

rd = rα,β(α, β)Tα ⊗ Tβ ∈ Mer(R2)⊗ (g2
Λ,c) is a dynamical classical

r -matrix
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Classical dynamical r -matrices: Gauge fixing in 3d (CS) gravity Classical dynamical r -matrices

Classical dynamical r -matrices

What is a classical dynamical r -matrix?

Let g be a finite dimensional Lie algebra,

h ⊂ g a Lie subalgebra and
K ∈ (S2g)g. A classical dynamical (g, h,K )-r -matrix is an h-equivariant
meromorphic function

rd : h∗ → (g⊗ g)h

such that
rd + r2,1

d = K (1)

and∑
i

(
x

(1)
i

∂r23
d

∂xi
− x

(2)
i

∂r13
d

∂xi
+ x

(3)
i

∂r12
d

∂xi

)
+[r12

d , r13
d ]+[r12

d , r23
d ]+[r13

d , r23
d ] = 0

(2)
where xi is a basis of h (i.e. a complete set of coordinate functions for h∗).
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Classical dynamical r -matrices: Gauge fixing in 3d (CS) gravity Classical dynamical r -matrices

Classical dynamical r -matrices for gΛ,c

Theorem. Let hΛ,c be a Lie subalgebra of gΛ,c , with basis {α,ψ}. A
function rd ∈ Mer(h∗Λ,c , gΛ,c ⊗ gΛ,c) given by

rd(α,ψ) =
1

2
(Ja ⊗ Pa + Pa ⊗ Ja) + Ja ⊗ A(α,ψ)Ja

+ Pa ⊗ B(α,ψ)Ja − B(α,ψ)Ja ⊗ Pa + Pa ⊗ C (α,ψ)Pa

is a classical dynamical r -matrix if and only if

1

2
tr(A2)− λ

2
[tr(B)2 − tr(B2)] + divα(vA) = µλ

tr(CB) + divψ(vC ) = 0

A(B + Bt)− (Bt − tr(B)id)(λC − A) + tr(AB)id

−curlα(Bt) + gradψ(vA) = 0
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Classical dynamical r -matrices: Gauge fixing in 3d (CS) gravity Particular solutions of classical dynamical r -matrices

Dynamical generalization of well-known classical r -matrices

Dynamical classical doubles (A = [vA, · ], B = ±1
2 id, C = 0)

rDd (α0) =

(
1

2
∓ 1

2

)
Ja ⊗ Pa +

(
1

2
± 1

2

)
Pa ⊗ Ja + εabcvAa (α0)Jb ⊗ Jc

such that

〈vA(α0), vA(α0)〉 − da0

dα0
+ λ = 0

“Dynamical” Kappa-Poincaré (A = C = 0, B = [V B , · ])

rκPd =
1

2
(Ja ⊗ Pa + Pa ⊗ Ja) + εabcv

a(Pb ⊗ Jc − Jb ⊗ Pc)

with

〈v , v〉 = −1

4
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Dynamical generalised complexifications

r
√
λ

d (ψ, α) = rsym + f (ψ, α)(P1∧J2−P2∧J1) +g(ψ, α)(P1∧P2 +λJ1∧J2)

where

f (ψ, α) =


1
2

sin(ψ)

cos(ψ)+cosh(
√
|λ|α)

, λ < 0

1
2 tan

(
ψ
2

)
, λ = 0

1
2

sin(ψ)

cos(ψ)+cos(
√
λα)

, λ > 0

and

g(ψ, α) =


1

2
√
|λ|

sinh(
√
|λ|)

cos(ψ)+cosh(
√
|λ|α)

, λ < 0

α

4 cos2(ψ2 )
, λ = 0

1
2
√
λ

sin(
√
λα)

cos(ψ)+cos(
√
λα)

, λ > 0
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Further results

Further Results

Exciting connections and extensions of previous works ...

Derived explicitly from physical arguments in Meusburger-Schönfeld
[11’].
Dynamical generalized complexifications correspond to
Alekseev-Meinrenken [00’] type.
In Balog-Feher-Marshall [99’] classical dynamical r -matrices used to
construct Poisson structures associated to chiral WZNW.
Quantization in Etingof-Schedler-Schiffmann [99’] and
Etingof-Enriquez [03’].
Dynamical generalizations of Fock-Rosly spaces.
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Thank You Questions?

Thank You!
Any Questions? Please ask!
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