# Gauge fixing in 3d gravity and classical dynamical $r$-matrices 

Juan Carlos Morales Parra<br>Joint with Prof. Bernd Schroers<br>Heriot-Watt University<br>Groups, Rings and Yang-Baxter equation 2023

23rd June, 2023

## Outline

(1) Chern-Simons formulation of 3d gravity
(2) Classical $r$-matrices: Phase space of 3d (CS) gravity
(3) Classical dynamical $r$-matrices: Gauge fixing in 3d (CS) gravity
(4) Further results

## Pure gravity in 3 dimensions

2 key observations about 3d GR
(1) Geometry: The Weyl tensor is identically zero.
(2) Einstein's equation: The equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$ reduces to $R_{\mu \nu}=2 \wedge g_{\mu \nu}$.

## Pure gravity in 3 dimensions

2 key observations about 3d GR
(1) Geometry: The Weyl tensor is identically zero.
(2) Einstein's equation: The equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$ reduces to $R_{\mu \nu}=2 \wedge g_{\mu \nu}$.

Implications for the theory
(1) NO dynamical degrees of freedom.
(2) (Outside sources) the spacetimes are locally of constant curvature.

## Pure gravity in 3 dimensions

2 key observations about 3d GR
(1) Geometry: The Weyl tensor is identically zero.
(2) Einstein's equation: The equation $R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=0$ reduces to $R_{\mu \nu}=2 \wedge g_{\mu \nu}$.

Implications for the theory
(1) NO dynamical degrees of freedom.
(2) (Outside sources) the spacetimes are locally of constant curvature.

Local model spacetimes and isometry groups ( $G_{\Lambda, c}$ )

| $\Lambda$ | Euclidean $\left(c^{2}<0\right)$ | Lorentzian $\left(c^{2}>0\right)$ |
| :---: | :---: | :---: |
| 0 | $\mathbf{E}^{3}=\mathrm{ISO}(3) / \mathrm{SO}(3)$ | $\mathbf{M}^{2+1}=\mathrm{ISO}(2,1) / \mathrm{SO}(2,1)$ |
| $>0$ | $\mathbf{S}^{3}=\mathrm{SO}(4) / \mathrm{SO}(3)$ | $\mathbf{d S}^{2+1}=\mathrm{SO}(3,1) / \mathrm{SO}(2,1)$ |
| $<0$ | $\mathbf{H}^{3}=\mathrm{SO}(3,1) / \mathrm{SO}(3)$ | $\mathbf{A d S}^{2+1}=\mathrm{SO}(2,2) / \mathrm{SO}(2,1)$ |

## Chern-Simons formulation of pure 3d gravity

Chern-Simons formulation
With the combined connection $A=e^{a} P_{a}+\omega^{a} J_{a}$, the Chern-Simons action

$$
S_{C S}(A)=\frac{k}{4 \pi} \int_{\mathcal{M}^{3}}\left\langle A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right\rangle \quad \text { with } \quad k=\frac{1}{4 \pi G_{\text {Newton }}}
$$

coincides with the $\Lambda$-Einstein-Hilbert action.

## Chern-Simons formulation of pure 3d gravity

Chern-Simons formulation
With the combined connection $A=e^{a} P_{a}+\omega^{a} J_{a}$, the Chern-Simons action

$$
S_{C S}(A)=\frac{k}{4 \pi} \int_{\mathcal{M}^{3}}\left\langle A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right\rangle \quad \text { with } \quad k=\frac{1}{4 \pi G_{\text {Newton }}}
$$

coincides with the $\Lambda$-Einstein-Hilbert action.
Lie algebra $\mathfrak{g}_{\Lambda, c}$

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c}, \quad\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P^{c}, \quad \text { and } \quad\left[P_{a}, P_{b}\right]=(\underbrace{-c^{2} \Lambda}_{\lambda}) \epsilon_{a b c} J^{c}
$$

## Chern-Simons formulation of pure 3d gravity

Chern-Simons formulation
With the combined connection $A=e^{a} P_{a}+\omega^{a} J_{a}$, the Chern-Simons action

$$
S_{C S}(A)=\frac{k}{4 \pi} \int_{\mathcal{M}^{3}}\left\langle A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right\rangle \quad \text { with } \quad k=\frac{1}{4 \pi G_{\text {Newton }}}
$$

coincides with the $\Lambda$-Einstein-Hilbert action.
Lie algebra $\mathfrak{g}_{\Lambda, c}$

$$
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J^{c}, \quad\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P^{c}, \quad \text { and } \quad\left[P_{a}, P_{b}\right]=(\underbrace{-c^{2} \Lambda}_{\lambda}) \epsilon_{a b c} J^{c}
$$

Ad-invariant (standard) symmetric bilinear form

$$
\left\langle J_{a}, J_{b}\right\rangle=0, \quad\left\langle J_{a}, P_{b}\right\rangle=c^{2} \eta_{a b} \quad \text { and } \quad\left\langle P_{a}, P_{b}\right\rangle=0
$$

## Phase space for 3d (CS) gravity?

Phase space $\mathcal{P}$ of CS formulation of 3d gravity
For $\mathcal{M}_{3} \cong \mathbb{R} \times S_{g, n}$, the moduli space is parametrized by the set of holonomies along the generators of $\pi_{1}\left(S_{g, n}\right)$ such that $\left[A_{g}, B_{g}^{-1}\right] \cdots\left[A_{1}, B_{1}^{-1}\right] \cdot M_{n} \cdots M_{1}=1$, modulo global conjugation.

## Phase space for 3d (CS) gravity?

Phase space $\mathcal{P}$ of CS formulation of 3d gravity
For $\mathcal{M}_{3} \cong \mathbb{R} \times S_{g, n}$, the moduli space is parametrized by the set of holonomies along the generators of $\pi_{1}\left(S_{g, n}\right)$ such that $\left[A_{g}, B_{g}^{-1}\right] \cdots\left[A_{1}, B_{1}^{-1}\right] \cdot M_{n} \cdots M_{1}=1$, modulo global conjugation.

Graphically


## Phase space for 3d (CS) gravity

Mathematically
The Phase space is a constrained system given by

$$
\mathcal{P}=\mathcal{P}_{\text {aux }} / G_{\Lambda, c}
$$

## Phase space for 3d (CS) gravity

Mathematically
The Phase space is a constrained system given by

$$
\mathcal{P}=\mathcal{P}_{\text {aux }} / G_{\Lambda, c}
$$

where

$$
\mathcal{P}_{\text {aux }}=\left\{\left(M_{1}, \ldots, M_{n}, A_{1}, \ldots, B_{g}\right) \in G_{\Lambda, c}^{n+2 g} \mid M_{i} \in \mathcal{C}_{i}, F\left(M_{i}, A_{j}, B_{j}\right)=1\right\}
$$

## Phase space for 3d (CS) gravity

Mathematically
The Phase space is a constrained system given by

$$
\mathcal{P}=\mathcal{P}_{\text {aux }} / G_{\Lambda, c}
$$

where

$$
\mathcal{P}_{\text {aux }}=\left\{\left(M_{1}, \ldots, M_{n}, A_{1}, \ldots, B_{g}\right) \in G_{\Lambda, c}^{n+2 g} \mid M_{i} \in \mathcal{C}_{i}, F\left(M_{i}, A_{j}, B_{j}\right)=1\right\}
$$

with:

- $\mathcal{C}_{i}$ fixed conjugacy classes of $G_{\Lambda, c}$ for $i=1, \ldots, n$.


## Phase space for 3d (CS) gravity

Mathematically
The Phase space is a constrained system given by

$$
\mathcal{P}=\mathcal{P}_{\text {aux }} / G_{\Lambda, c}
$$

where

$$
\mathcal{P}_{\text {aux }}=\left\{\left(M_{1}, \ldots, M_{n}, A_{1}, \ldots, B_{g}\right) \in G_{\Lambda, c}^{n+2 g} \mid M_{i} \in \mathcal{C}_{i}, F\left(M_{i}, A_{j}, B_{j}\right)=1\right\}
$$

with:

- $\mathcal{C}_{i}$ fixed conjugacy classes of $G_{\Lambda, c}$ for $i=1, \ldots, n$.
and
- $F\left(M_{i}, A_{j}, B_{j}\right)=\prod_{j=1}^{g}\left[B_{j}, A_{j}^{-1}\right] \prod_{i=1}^{n} M_{i}$


## Poisson structure over $\mathcal{P}$

Fock-Rosly (Alekseev) approach to Atiyah-Bott [92]
The Poisson structure ( $\mathcal{P}, \prod_{A B}$ ) could be obtained via reduction from $\left(\mathcal{P}_{\text {ext }}, \Pi_{F R}^{r}\right)$, where

## Poisson structure over $\mathcal{P}$

Fock-Rosly (Alekseev) approach to Atiyah-Bott [92]
The Poisson structure ( $\mathcal{P}, \prod_{A B}$ ) could be obtained via reduction from $\left(\mathcal{P}_{\text {ext }}, \Pi_{F R}^{r}\right)$, where

$$
\mathcal{P}_{\text {ext }}=G_{\Lambda, c}^{n+2 g}
$$

## Poisson structure over $\mathcal{P}$

Fock-Rosly (Alekseev) approach to Atiyah-Bott [92]
The Poisson structure ( $\mathcal{P}, \prod_{A B}$ ) could be obtained via reduction from ( $\mathcal{P}_{\text {ext }}, \Pi_{\text {FR }}^{r}$ ), where

$$
\mathcal{P}_{\text {ext }}=G_{\Lambda, c}^{n+2 g}
$$

and

$$
\Pi_{F R}^{r}=\sum_{i=1}^{n} r^{\alpha \beta}\left(\frac{1}{2} R_{\alpha}^{M_{i}} \wedge R_{\beta}^{M_{i}}+\frac{1}{2} L_{\alpha}^{M_{i}} \wedge L_{\beta}^{M_{i}}+R_{\alpha}^{M_{i}} \wedge L_{\beta}^{M_{i}}\right)+\cdots
$$

## Poisson structure over $\mathcal{P}$

Fock-Rosly (Alekseev) approach to Atiyah-Bott [92]
The Poisson structure ( $\mathcal{P}, \prod_{A B}$ ) could be obtained via reduction from ( $\mathcal{P}_{\text {ext }}, \Pi_{\text {FR }}^{r}$ ), where

$$
\mathcal{P}_{\text {ext }}=G_{\Lambda, c}^{n+2 g}
$$

and

$$
\Pi_{F R}^{r}=\sum_{i=1}^{n} r^{\alpha \beta}\left(\frac{1}{2} R_{\alpha}^{M_{i}} \wedge R_{\beta}^{M_{i}}+\frac{1}{2} L_{\alpha}^{M_{i}} \wedge L_{\beta}^{M_{i}}+R_{\alpha}^{M_{i}} \wedge L_{\beta}^{M_{i}}\right)+\cdots
$$

i.e. $\{F, G\}=\Pi_{F R}^{r}(d F, d G)$ with $F, G \in \mathcal{C}^{\infty}\left(G_{\Lambda, c}^{n+2 g}\right)$.

## Poisson structure over $\mathcal{P}$

Fock-Rosly (Alekseev) approach to Atiyah-Bott [92]
The Poisson structure ( $\mathcal{P}, \prod_{A B}$ ) could be obtained via reduction from ( $\mathcal{P}_{\text {ext }}, \Pi_{\text {FR }}^{r}$ ), where

$$
\mathcal{P}_{\text {ext }}=G_{\Lambda, c}^{n+2 g}
$$

and

$$
\Pi_{F R}^{r}=\sum_{i=1}^{n} r^{\alpha \beta}\left(\frac{1}{2} R_{\alpha}^{M_{i}} \wedge R_{\beta}^{M_{i}}+\frac{1}{2} L_{\alpha}^{M_{i}} \wedge L_{\beta}^{M_{i}}+R_{\alpha}^{M_{i}} \wedge L_{\beta}^{M_{i}}\right)+\cdots
$$

i.e. $\{F, G\}=\Pi_{F R}^{r}(d F, d G)$ with $F, G \in \mathcal{C}^{\infty}\left(G_{\Lambda, c}^{n+2 g}\right)$.

Key ingredient
$r=r^{a b} T_{a} \otimes T_{b} \in \mathfrak{g}_{\Lambda, c}^{2}$ is a classical $r$-matrix.

## First constraining $\rightarrow$ Second Quantization

Gauge fixing the $\mathrm{F}=1$ constraint
Using 6 auxiliary gauge constraints over $\mathcal{P}_{\text {ext }}$ (e.g. just involving $M_{1}$ and $M_{2}$ ), the Dirac bracket defines a Poisson space $\left(\mathcal{P}_{\text {ext }}^{G F}, \Pi_{F R}^{r_{d}}\right)$ with

## First constraining $\rightarrow$ Second Quantization

Gauge fixing the $\mathrm{F}=1$ constraint
Using 6 auxiliary gauge constraints over $\mathcal{P}_{\text {ext }}$ (e.g. just involving $M_{1}$ and $M_{2}$ ), the Dirac bracket defines a Poisson space $\left(\mathcal{P}_{\text {ext }}^{G F}, \Pi_{F R}^{r_{d}}\right)$ with

$$
\mathcal{P}_{\mathrm{ext}}^{G F}=\mathbb{R}^{2} \times G_{\Lambda, c}^{n+2 g-2}
$$

## First constraining $\rightarrow$ Second Quantization

Gauge fixing the $\mathrm{F}=1$ constraint
Using 6 auxiliary gauge constraints over $\mathcal{P}_{\text {ext }}$ (e.g. just involving $M_{1}$ and $\left.M_{2}\right)$, the Dirac bracket defines a Poisson space $\left(\mathcal{P}_{\mathrm{ext}}^{G F}, \Pi_{F R}^{r_{d}}\right)$ with

$$
\mathcal{P}_{\mathrm{ext}}^{G F}=\mathbb{R}^{2} \times G_{\Lambda, c}^{n+2 g-2}
$$

and Poisson structure given by $F, G \in \mathcal{C}^{\infty}\left(G_{\Lambda, c}^{n+2 g-2}\right)$

$$
\begin{aligned}
\{\alpha, \psi\}_{D}=0, & \{F, G\}_{D}=\Pi_{F R}^{r_{d}}(d F, d G) \\
\{\alpha, F\}_{D}=-\left(R_{J_{0}}+L_{J_{0}}\right) F, & \{\psi, F\}_{D}=-\left(R_{P_{0}}+L_{P_{0}}\right) F
\end{aligned}
$$

## First constraining $\rightarrow$ Second Quantization

Gauge fixing the $\mathrm{F}=1$ constraint
Using 6 auxiliary gauge constraints over $\mathcal{P}_{\text {ext }}$ (e.g. just involving $M_{1}$ and $\left.M_{2}\right)$, the Dirac bracket defines a Poisson space $\left(\mathcal{P}_{\text {ext }}^{G F}, \Pi_{F R}^{r_{d}}\right)$ with

$$
\mathcal{P}_{\mathrm{ext}}^{G F}=\mathbb{R}^{2} \times G_{\Lambda, c}^{n+2 g-2}
$$

and Poisson structure given by $F, G \in \mathcal{C}^{\infty}\left(G_{\Lambda, c}^{n+2 g-2}\right)$

$$
\begin{aligned}
\{\alpha, \psi\}_{D}=0, & \{F, G\}_{D}=\Pi_{F R}^{r_{d}}(d F, d G), \\
\{\alpha, F\}_{D}=-\left(R_{J_{0}}+L_{J_{0}}\right) F, & \{\psi, F\}_{D}=-\left(R_{P_{0}}+L_{P_{0}}\right) F
\end{aligned}
$$

Key ingredient
$r_{d}=r^{\alpha, \beta}(\alpha, \beta) T_{\alpha} \otimes T_{\beta} \in \operatorname{Mer}\left(\mathbb{R}^{2}\right) \otimes\left(\mathfrak{g}_{\Lambda, c}^{2}\right)$ is a dynamical classical $r$-matrix

## Classical dynamical $r$-matrices

What is a classical dynamical $r$-matrix?
Let $\mathfrak{g}$ be a finite dimensional Lie algebra,

## Classical dynamical r-matrices

What is a classical dynamical $r$-matrix?
Let $\mathfrak{g}$ be a finite dimensional Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra

## Classical dynamical $r$-matrices

What is a classical dynamical $r$-matrix?
Let $\mathfrak{g}$ be a finite dimensional Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra and $K \in\left(S^{2} \mathfrak{g}\right)^{\mathfrak{g}}$.

## Classical dynamical $r$-matrices

What is a classical dynamical $r$-matrix?
Let $\mathfrak{g}$ be a finite dimensional Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra and $K \in\left(S^{2} \mathfrak{g}\right)^{\mathfrak{g}}$. A classical dynamical $(\mathfrak{g}, \mathfrak{h}, K)$ - $r$-matrix is an $\mathfrak{h}$-equivariant meromorphic function

$$
r_{d}: \mathfrak{h}^{*} \rightarrow(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{h}}
$$

such that

## Classical dynamical $r$-matrices

What is a classical dynamical $r$-matrix?
Let $\mathfrak{g}$ be a finite dimensional Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra and $K \in\left(S^{2} \mathfrak{g}\right)^{\mathfrak{g}}$. A classical dynamical $(\mathfrak{g}, \mathfrak{h}, K)$ - $r$-matrix is an $\mathfrak{h}$-equivariant meromorphic function

$$
r_{d}: \mathfrak{h}^{*} \rightarrow(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{h}}
$$

such that

$$
\begin{equation*}
r_{d}+r_{d}^{2,1}=K \tag{1}
\end{equation*}
$$

## Classical dynamical $r$-matrices

What is a classical dynamical $r$-matrix?
Let $\mathfrak{g}$ be a finite dimensional Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Lie subalgebra and $K \in\left(S^{2} \mathfrak{g}\right)^{\mathfrak{g}}$. A classical dynamical $(\mathfrak{g}, \mathfrak{h}, K)$ - $r$-matrix is an $\mathfrak{h}$-equivariant meromorphic function

$$
r_{d}: \mathfrak{h}^{*} \rightarrow(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{h}}
$$

such that

$$
\begin{equation*}
r_{d}+r_{d}^{2,1}=K \tag{1}
\end{equation*}
$$

and
$\sum_{i}\left(x_{i}^{(1)} \frac{\partial r_{d}^{23}}{\partial x_{i}}-x_{i}^{(2)} \frac{\partial r_{d}^{13}}{\partial x_{i}}+x_{i}^{(3)} \frac{\partial r_{d}^{12}}{\partial x_{i}}\right)+\left[r_{d}^{12}, r_{d}^{13}\right]+\left[r_{d}^{12}, r_{d}^{23}\right]+\left[r_{d}^{13}, r_{d}^{23}\right]=0$
where $x_{i}$ is a basis of $\mathfrak{h}$ (i.e. a complete set of coordinate functions for $\mathfrak{h}^{*}$ ).

## Classical dynamical $r$-matrices for $\mathfrak{g}_{\Lambda, c}$

Theorem. Let $\mathfrak{h}_{\Lambda, c}$ be a Lie subalgebra of $\mathfrak{g}_{\Lambda, c}$, with basis $\{\boldsymbol{\alpha}, \boldsymbol{\psi}\}$. A function $r_{d} \in \operatorname{Mer}\left(\mathfrak{h}_{\Lambda, c}^{*}, \mathfrak{g}_{\Lambda, c} \otimes \mathfrak{g}_{\Lambda, c}\right)$ given by

$$
\begin{aligned}
r_{d}(\boldsymbol{\alpha}, \boldsymbol{\psi})=\frac{1}{2} & \left(J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)+J^{a} \otimes A(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a} \\
& +P^{a} \otimes B(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a}-B(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a} \otimes P^{a}+P^{a} \otimes C(\boldsymbol{\alpha}, \boldsymbol{\psi}) P_{a}
\end{aligned}
$$

## Classical dynamical $r$-matrices for $\mathfrak{g}_{\Lambda, c}$

Theorem. Let $\mathfrak{h}_{\Lambda, c}$ be a Lie subalgebra of $\mathfrak{g}_{\Lambda, c}$, with basis $\{\boldsymbol{\alpha}, \boldsymbol{\psi}\}$. A function $r_{d} \in \operatorname{Mer}\left(\mathfrak{h}_{\Lambda, c}^{*}, \mathfrak{g}_{\Lambda, c} \otimes \mathfrak{g}_{\Lambda, c}\right)$ given by

$$
\begin{aligned}
r_{d}(\boldsymbol{\alpha}, \boldsymbol{\psi})=\frac{1}{2} & \left(J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)+J^{a} \otimes A(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a} \\
& +P^{a} \otimes B(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a}-B(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a} \otimes P^{a}+P^{a} \otimes C(\boldsymbol{\alpha}, \boldsymbol{\psi}) P_{a}
\end{aligned}
$$

is a classical dynamical $r$-matrix if and only if

## Classical dynamical $r$-matrices for $\mathfrak{g}_{\Lambda, c}$

Theorem. Let $\mathfrak{h}_{\Lambda, c}$ be a Lie subalgebra of $\mathfrak{g}_{\Lambda, c}$, with basis $\{\boldsymbol{\alpha}, \boldsymbol{\psi}\}$. A function $r_{d} \in \operatorname{Mer}\left(\mathfrak{h}_{\Lambda, c}^{*}, \mathfrak{g}_{\Lambda, c} \otimes \mathfrak{g}_{\Lambda, c}\right)$ given by

$$
\begin{aligned}
r_{d}(\boldsymbol{\alpha}, \boldsymbol{\psi})=\frac{1}{2}( & \left.J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)+J^{a} \otimes A(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a} \\
& +P^{a} \otimes B(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a}-B(\boldsymbol{\alpha}, \boldsymbol{\psi}) J_{a} \otimes P^{a}+P^{a} \otimes C(\boldsymbol{\alpha}, \boldsymbol{\psi}) P_{a}
\end{aligned}
$$

is a classical dynamical $r$-matrix if and only if

$$
\begin{aligned}
\frac{1}{2} \operatorname{tr}\left(A^{2}\right)-\frac{\lambda}{2}\left[\operatorname{tr}(B)^{2}-\operatorname{tr}\left(B^{2}\right)\right]+\operatorname{div}_{\alpha}\left(v^{A}\right) & =\mu \lambda \\
\operatorname{tr}(C B)+\operatorname{div}_{\psi}\left(v^{C}\right) & =0 \\
A\left(B+B^{t}\right)-\left(B^{t}-\operatorname{tr}(B) \mathrm{id}\right)(\lambda C-A)+\operatorname{tr}(A B) \mathrm{id} & \\
-\operatorname{curl}_{\alpha}\left(B^{t}\right)+\operatorname{grad}_{\psi}\left(v^{A}\right) & =0
\end{aligned}
$$

## Dynamical generalization of well-known classical $r$-matrices

## Dynamical generalization of well-known classical $r$-matrices

Dynamical classical doubles $\left(A=\left[v^{A}, \cdot\right], B= \pm \frac{1}{2} \mathrm{id}, C=0\right)$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical classical doubles ( $A=\left[v^{A}, \cdot\right], B= \pm \frac{1}{2} \mathrm{id}, C=0$ )

$$
r_{d}^{D}\left(\alpha_{0}\right)=\left(\frac{1}{2} \mp \frac{1}{2}\right) J_{a} \otimes P^{a}+\left(\frac{1}{2} \pm \frac{1}{2}\right) P_{a} \otimes J^{a}+\epsilon^{a b c} v_{a}^{A}\left(\alpha_{0}\right) J_{b} \otimes J_{c}
$$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical classical doubles ( $A=\left[v^{A}, \cdot\right], B= \pm \frac{1}{2} \mathrm{id}, C=0$ )

$$
r_{d}^{D}\left(\alpha_{0}\right)=\left(\frac{1}{2} \mp \frac{1}{2}\right) J_{a} \otimes P^{a}+\left(\frac{1}{2} \pm \frac{1}{2}\right) P_{a} \otimes J^{a}+\epsilon^{a b c} v_{a}^{A}\left(\alpha_{0}\right) J_{b} \otimes J_{c}
$$ such that

$$
\left\langle v^{A}\left(\alpha_{0}\right), v^{A}\left(\alpha_{0}\right)\right\rangle-\frac{d a_{0}}{d \alpha_{0}}+\lambda=0
$$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical classical doubles ( $A=\left[v^{A}, \cdot\right], B= \pm \frac{1}{2} \mathrm{id}, C=0$ )

$$
r_{d}^{D}\left(\alpha_{0}\right)=\left(\frac{1}{2} \mp \frac{1}{2}\right) J_{a} \otimes P^{a}+\left(\frac{1}{2} \pm \frac{1}{2}\right) P_{a} \otimes J^{a}+\epsilon^{a b c} v_{a}^{A}\left(\alpha_{0}\right) J_{b} \otimes J_{c}
$$ such that

$$
\left\langle v^{A}\left(\alpha_{0}\right), v^{A}\left(\alpha_{0}\right)\right\rangle-\frac{d a_{0}}{d \alpha_{0}}+\lambda=0
$$

"Dynamical" Kappa-Poincaré $\left(A=C=0, B=\left[V^{B}, \cdot\right]\right)$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical classical doubles ( $A=\left[v^{A}, \cdot\right], B= \pm \frac{1}{2} \mathrm{id}, C=0$ )

$$
r_{d}^{D}\left(\alpha_{0}\right)=\left(\frac{1}{2} \mp \frac{1}{2}\right) J_{a} \otimes P^{a}+\left(\frac{1}{2} \pm \frac{1}{2}\right) P_{a} \otimes J^{a}+\epsilon^{a b c} v_{a}^{A}\left(\alpha_{0}\right) J_{b} \otimes J_{c}
$$ such that

$$
\left\langle v^{A}\left(\alpha_{0}\right), v^{A}\left(\alpha_{0}\right)\right\rangle-\frac{d a_{0}}{d \alpha_{0}}+\lambda=0
$$

"Dynamical" Kappa-Poincaré $\left(A=C=0, B=\left[V^{B}, \cdot\right]\right)$

$$
r_{d}^{\kappa p}=\frac{1}{2}\left(J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)+\epsilon_{a b c} v^{a}\left(P^{b} \otimes J^{c}-J^{b} \otimes P^{c}\right)
$$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical classical doubles ( $A=\left[v^{A}, \cdot\right], B= \pm \frac{1}{2} \mathrm{id}, C=0$ )

$$
r_{d}^{D}\left(\alpha_{0}\right)=\left(\frac{1}{2} \mp \frac{1}{2}\right) J_{a} \otimes P^{a}+\left(\frac{1}{2} \pm \frac{1}{2}\right) P_{a} \otimes J^{a}+\epsilon^{a b c} v_{a}^{A}\left(\alpha_{0}\right) J_{b} \otimes J_{c}
$$

such that

$$
\left\langle v^{A}\left(\alpha_{0}\right), v^{A}\left(\alpha_{0}\right)\right\rangle-\frac{d a_{0}}{d \alpha_{0}}+\lambda=0
$$

"Dynamical" Kappa-Poincaré $\left(A=C=0, B=\left[V^{B}, \cdot\right]\right)$

$$
r_{d}^{k^{F} P}=\frac{1}{2}\left(J_{a} \otimes P^{a}+P_{a} \otimes J^{a}\right)+\epsilon_{a b c} v^{a}\left(P^{b} \otimes J^{c}-J^{b} \otimes P^{c}\right)
$$

with

$$
\langle v, v\rangle=-\frac{1}{4}
$$

## Dynamical generalization of well-known classical $r$-matrices

## Dynamical generalised complexifications

## Dynamical generalization of well-known classical $r$-matrices

Dynamical generalised complexifications

$$
r_{d}^{\sqrt{\lambda}}(\psi, \alpha)=r_{\text {sym }}+f(\psi, \alpha)\left(P_{1} \wedge J_{2}-P_{2} \wedge J_{1}\right)+g(\psi, \alpha)\left(P_{1} \wedge P_{2}+\lambda J_{1} \wedge J_{2}\right)
$$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical generalised complexifications
$r_{d}^{\sqrt{\lambda}}(\psi, \alpha)=r_{\text {sym }}+f(\psi, \alpha)\left(P_{1} \wedge J_{2}-P_{2} \wedge J_{1}\right)+g(\psi, \alpha)\left(P_{1} \wedge P_{2}+\lambda J_{1} \wedge J_{2}\right)$ where

$$
f(\psi, \alpha)= \begin{cases}\frac{1}{2} \frac{\sin (\psi)}{\cos (\psi)+\cosh (\sqrt{|\lambda|} \alpha)}, & \lambda<0 \\ \frac{1}{2} \tan \left(\frac{\psi}{2}\right), & \lambda=0 \\ \frac{1}{2} \frac{\sin (\psi)}{\cos (\psi)+\cos (\sqrt{\lambda} \alpha)}, & \lambda>0\end{cases}
$$

## Dynamical generalization of well-known classical $r$-matrices

Dynamical generalised complexifications
$r_{d}^{\sqrt{\lambda}}(\psi, \alpha)=r_{\text {sym }}+f(\psi, \alpha)\left(P_{1} \wedge J_{2}-P_{2} \wedge J_{1}\right)+g(\psi, \alpha)\left(P_{1} \wedge P_{2}+\lambda J_{1} \wedge J_{2}\right)$
where

$$
f(\psi, \alpha)= \begin{cases}\frac{1}{2} \frac{\sin (\psi)}{\cos (\psi)+\cosh (\sqrt{|\lambda|} \alpha)}, & \lambda<0 \\ \frac{1}{2} \tan \left(\frac{\psi}{2}\right), & \lambda=0 \\ \frac{1}{2} \frac{\sin (\psi)}{\cos (\psi)+\cos (\sqrt{\lambda} \alpha)}, & \lambda>0\end{cases}
$$

and

$$
g(\psi, \alpha)= \begin{cases}\frac{1}{2 \sqrt{|\lambda|}} \frac{\sinh (\sqrt{|\lambda|})}{\cos (\psi)+\cosh (\sqrt{|\lambda|} \alpha)}, & \lambda<0 \\ \frac{\alpha}{4 \cos ^{2}\left(\frac{\psi}{2}\right)}, & \lambda=0 \\ \frac{1}{2 \sqrt{\lambda}} \frac{\sin (\sqrt{\lambda} \alpha)}{\cos (\psi)+\cos (\sqrt{\lambda} \alpha)}, & \lambda>0\end{cases}
$$

## Further Results

## Exciting connections and extensions of previous works ...

## Further Results

Exciting connections and extensions of previous works ...

- Derived explicitly from physical arguments in Meusburger-Schönfeld [11'].


## Further Results

Exciting connections and extensions of previous works ...

- Derived explicitly from physical arguments in Meusburger-Schönfeld [11'].
- Dynamical generalized complexifications correspond to Alekseev-Meinrenken [00'] type.


## Further Results

Exciting connections and extensions of previous works ...

- Derived explicitly from physical arguments in Meusburger-Schönfeld [11'].
- Dynamical generalized complexifications correspond to Alekseev-Meinrenken [00'] type.
- In Balog-Feher-Marshall [99'] classical dynamical r-matrices used to construct Poisson structures associated to chiral WZNW.


## Further Results

Exciting connections and extensions of previous works ...

- Derived explicitly from physical arguments in Meusburger-Schönfeld [11'].
- Dynamical generalized complexifications correspond to Alekseev-Meinrenken [00'] type.
- In Balog-Feher-Marshall [99'] classical dynamical r-matrices used to construct Poisson structures associated to chiral WZNW.
- Quantization in Etingof-Schedler-Schiffmann [99'] and Etingof-Enriquez [03'].


## Further Results

Exciting connections and extensions of previous works ...

- Derived explicitly from physical arguments in Meusburger-Schönfeld [11'].
- Dynamical generalized complexifications correspond to Alekseev-Meinrenken [00'] type.
- In Balog-Feher-Marshall [99'] classical dynamical r-matrices used to construct Poisson structures associated to chiral WZNW.
- Quantization in Etingof-Schedler-Schiffmann [99'] and Etingof-Enriquez [03'].
- Dynamical generalizations of Fock-Rosly spaces.


## Thank You! Any Questions? Please ask!

