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Plan of the talk

1) set-theoretic solutions (X , r) and their permutation groups G(X , r)

2) two approaches: decomposability and retractability of solutions

3) another algebraic tool: braces

4) simple solutions

5) solutions of square-free cardinality
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Set-theoretic solutions of the YBE
A fundamental problem is to construct (and classify) all set-theoretic
solutions of the Yang-Baxter equation. These are the bĳective maps

r : X × X → X × X ,
defined for a nonempty set X , satisfying

(r × id)(id×r)(r × id) = (id×r)(r × id)(id×r)
considered as maps X × X × X → X × X × X .

A set-theoretic solution r : X × X → X × X , written in the form
r(x , y) = (σx (y), γy (x)), for x , y ∈ X ,

is non-degenerate if σx and γx are bĳective maps from X to X , for all
x ∈ X . And it is involutive if r2 = id.

For such solutions one easily verifies that
γy (x) = σ−1

σx (y)(x), for all x , y ∈ X .
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Convention. In this talk, a solution of the YBE means a finite involutive,
non-degenerate, set-theoretic solution of the Yang-Baxter equation.

By SymX we denote the symmetric group on the set X .

Every solution (X , r) of the YBE is equipped with a permutation group
acting on X :

G(X , r) = 〈σx | x ∈ X 〉 ⊆ SymX

An example. Let X be a finite set and fix some σ ∈ SymX . Then

r(x , y) = (σ(y), σ−1(x))

defines a solution (X , r), called a permutation solution.

So here G(X , r) = 〈σ〉 is a cyclic group.

If σ = id then (X , r) is called a trivial solution.
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The structure group: G(X , r) = gr〈X : xy = σx (y)γy (x); x , y ∈ X 〉.

The group G(X , r) embeds into Fn o G(X , r) ⊆ Fn o SymX , where Fn is
the free abelian group of rank n, in such a way that the projection onto
Fn is a bĳection (Etingof, Schedler, Soloviev, 1999).

We have a natural epimorphism G(X , r) −→ G(X , r).

Theorem 1 (Etingof, Schedler and Soloviev, 1999)
The groups G(X , r) and G(X , r) are solvable.
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First approach - decomposability of solutions

We say that a solution (X , r) is decomposable if

X = Y ∪ Z

(a disjoint union) for some nonempty subsets Y ,Z ⊆ X such that
for y ∈ Y , z ∈ Z we have

σy (Y ), γy (Y ) ⊆ Y , σz(Z ), γz(Z ) ⊆ Z .

Lemma 2
(X , r) is indecomposable if and only if G(X , r) is transitive as a
permutation group on X.
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Theorem 3 (Etingof, Schedler, Soloviev)
If |X | = p is a prime and (X , r) is an indecomposable solution, then
r(x , y) = (σ(y), σ−1(x)), for a permutation σ ∈ SymX which is a cycle
of length p. (So, this is the permutation solution determined by σ.)

An important result of Rump (2005) shows that all square-free
(meaning that σx (x) = x for every x ∈ X ) solutions (X , r), with |X | > 1,
are decomposable.
However, it turned out that this is no longer true in full generality.

Ballester-Bolinches proposed (Oberwolfach, 2019) the question of
describing all primitive solutions, i.e. those solutions with a primitive
permutation group G(X , r).

7



Second approach - retract and multipermutation level
The retract relation on a solution (X , r) of the YBE (Etingof, Schedler
and Soloviev, 1999) is the equivalence relation ∼ on X defined by:

x ∼ y if and only if σx = σy .

Then r induces a solution r on the set X = X/∼. The retract of the
solution (X , r) is Ret(X , r) = (X , r).

A solution (X , r) is said to be irretractable if σx 6= σy for all distinct
elements x , y ∈ X , otherwise the solution (X , r) is retractable.

One defines Retn+1(X , r) = Ret(Retn(X , r)) for n ≥ 1; where
Ret1(X , r) = Ret(X , r).

And (X , r) is called a multipermutation solution of level n if
Retn(X , n) is a solution of cardinality 1 and n is the smallest integer with
this property.
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Example 4
Let X = {1, 2, 3, 4}. Define permutations

σ1 = (2, 3), σ2 = (1, 4), σ3 = (1, 2, 4, 3), σ4 = (1, 3, 4, 2) ∈ SymX .

Then (X , r) is a solution of the YBE, where r(x , y) = (σx (y), σ−1
σx (y)(x)),

for all x , y ∈ X .

Here G(X , r) = 〈σ1, σ2, σ3, σ4〉 is isomorphic to the dihedral group of
order 8.

It is clear that G(X , r) acts transitively on X .

This is an example of an indecomposable and irretractable solution.
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Let (X , r) and (Y , s) be solutions of the YBE. We write

r(x , y) = (σx (y), γy (x)) and s(t, z) = (σ′t(z), γ′z(t)),

for x , y ∈ X and t, z ∈ Y .

A homomorphism of solutions f : (X , r) −→ (Y , s) is a map
f : X −→ Y such that

f (σx (y)) = σ′f (x)(f (y)) and f (γy (x)) = γ′f (y)(f (x)), for x , y ∈ X .

One verifies that f is a homomorphism of solutions if and only if
f (σx (y)) = σ′f (x)(f (y)), for x , y ∈ X .

An example. The natural map (X , r) −→ Ret(X , r) is a homomorphism
of solutions.
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Newer tools - left braces (Rump, 2007)

A left brace is a set B with two binary operations, + and ·, such that:
(B,+) is an abelian group (the additive group of B),
(B, ·) is a group (the multiplicative group of B),

and for a, b, c ∈ B

a · (b + c) = (a · b) + (a · c)− a.

If we denote by 0, 1 the neutral elements of (B,+) and (B, ·), then 1 = 0.

Motivating examples include nilpotent rings R, that lead to left (and
right) braces (R,+, · ) with · defined by a · b = a + b − ab.

Also: if (B,+) is an abelian group and · and + coincide, then (B,+, · ) is
a left (and right) brace.
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In any left brace B there is an action λ : (B, ·)→ Aut(B,+), called the
lambda map of B, defined by

λ(a) = λa and λa(b) = a · b − a,

for a, b ∈ B. We shall write ab = a · b, for all a, b ∈ B.

A trivial brace is a left brace B such that ab = a + b, for all a, b ∈ B.

The socle of a left brace B is

Soc(B) = ker(λ) = {a ∈ B | ab = a + b, for all b ∈ B}.
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A left ideal of a left brace B is a subgroup L of the additive group of B
such that λa(L) ⊆ L, for all a ∈ B.

An ideal of a left brace B is a normal subgroup I of the multiplicative
group of B such that λa(I) ⊆ I, for all a ∈ B.

One easily verifies that for all a, b ∈ B we have

ab−1 = a − λab−1(b) and a − b = aλa−1b(b−1).

In particular, every ideal I of a left brace B also is a subgroup of the
additive group of B.

Then B/I inherits a left brace structure from B.

Example. Soc(B) is an ideal of the left brace B.

Example. Every Sylow subgroup of (B,+) is a left ideal of B.
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If (X , r) is a solution of the YBE, with r(x , y) = (σx (y), γy (x)), then its
structure group

G(X , r) = gr(x ∈ X | xy = σx (y)γy (x), for all x , y ∈ X )

has a structure of left brace with lambda map satisfying λx (y) = σx (y),
for x , y ∈ X ; where the additive group of G(X , r) is the free abelian
group with basis X .

The map x 7→ σx , from X to G(X , r), extends to a group epimorphism
φ : G(X , r) −→ G(X , r) and ker(φ) = Soc(G(X , r)).

This leads to the natural structure of left brace on G(X , r); such that
φ is a homomorphism of left braces.
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The solution of the YBE associated to a left brace B is (B, rB), where

rB(a, b) = (λa(b), λ−1
λa(b)(a)), for a, b ∈ B.

Lemma 5
Let B be a left brace. Then B/ Soc(B) ∼= G(B, rB) as left braces.

It follows that the group (B, ·) of a finite left brace B is solvable
(because by Theorem 1 permutation groups G(X , r) are solvable).
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Primitive solutions
Let G be a transitive permutation group on the set X (so G ⊆ SymX ).

A set Y ⊆ X is called an imprimitivity subset if
gY = hY or gY ∩ hY = ∅ for all g , h ∈ G .

Clearly Y = X and Y = {y}, y ∈ Y , satisfy this condition; they are
called trivial imprimitivity subsets.

G is a primitive permutation group (on X ) if X has no nontrivial
imprimitivity subsets.

Otherwise, X =
⋃

g∈G gY , so that |Y | divides |X |.

Definition 6 (Ballester-Bolinches)
A solution (X , r) of the YBE is said to be primitive if its permutation
group G(X , r) acts primitively on X .
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Lemma 7
Let (X , r) be an irretractable solution of the YBE. Consider the group
G = G(X , r) with its natural structure of left brace. Then, the map
ϕ : X −→ G defined by

ϕ(x) = σx for x ∈ X

is an injective homomorphism of solutions of the YBE from (X , r) to the
solution (G , rG) associated to the left brace G = G(X , r).

Let ϕ′ : X −→ ϕ(X ) be the bĳection defined by ϕ′(x) = σx .

Let ϕ̃ : G −→ G(G , rG) be the map defined by

ϕ̃(g) = λg for g ∈ G .

One shows that (ϕ′, ϕ̃) yields an isomorphism of permutation groups

G(X , r) −→ G(G , rG)

of the sets X and ϕ(X ). 17



Conclusion: we may replace (X , r) by the solution (X ′, r ′), where

X ′ = {σx | x ∈ X} ⊆ G = G(X , r) and r ′ = (rG)|X ′ .

Theorem 8 (Cedó, Jespers, JO; 2020)
Let (X , r) be a primitive solution of the YBE with |X | > 1. Then |X | is
prime. Furthermore, σx = σy , for all x , y ∈ X, and σx is a cycle of length
|X |. (So (X , r) is as in Theorem 3.)

The proof is based on the replacement of (X , r) by (X ′, r ′) (because
primitive ⇒ irretractable) and on a careful analysis of the brace structure
(interplay of the multiplicative and the additive structures) of G(G , rG);
using in particular the classical result on the structure of solvable
primitive permutation groups.
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Simple solutions - recent results

Definition 9 (Vendramin, 2016)
A solution (X , r) of the YBE is simple if |X | > 1 and for every
epimorphism f : (X , r) −→ (Y , s) of solutions either f is an isomorphism
or |Y | = 1.

It was shown that every indecomposable solution of the YBE is a so called
dynamical extension (introduced by Vendramin) of a simple solution.

At that time, the only known simple solutions were:
- permutation solutions of prime cardinality p (as in Theorem 3);
- 2 solutions of cardinality 4 (as in Example 4);
- and 3 solutions of cardinality 9 (found by L.Vendramin with a

computer).
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Lemma 10
Let (X , r) be a simple solution of the YBE. If |X | > 2 then (X , r) is
indecomposable.

As seen in Theorem 3, if (X , r) is an indecomposable solution of the YBE
and |X | is a prime, then it is a permutation solution (in particular it is
retractable).
Actually, such solutions are simple.

Lemma 11
Let (X , r) be a simple solution of the YBE. If |X | is not prime, then
(X , r) is irretractable.
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Recent constructions of simple solutions

Examples obtained so far are constructed:

1. via an approached based on systems of imprimitivity,
2. via simple left braces,
3. via asymmetric products of braces.

We present some constructions based on 1. and 2.
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1. Let (A,+) be a nontrivial (finite) abelian group. Let (ja)a∈A be a
family of elements of A such that ja = j−a for all a ∈ A. We define

r : A2 × A2 −→ A2 × A2 by:

r((a1, a2), (c1, c2)) =
(
σ(a1,a2)(c1, c2), σ

−1
σ(a1,a2)(c1,c2)

(a1, a2)
)
,

where
σ(a1,a2)(c1, c2) = (c1 + a2, c2 − jc1+a2−a1),

for all a1, a2, c1, c2 ∈ A. It is easy to see that σ(a1,a2) ∈ SymA2 .

One verifies that this is a solution of the YBE.

It is clear that the sets {(a, x) : x ∈ A}, a ∈ A, form a system of
imprimitivity for the action of the group G(A2, r) on A2.
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Let a ∈ A be a nonzero element. Let

Va,1 = gr(jc − jc+a | c ∈ A) ⊆ A.

For every i > 1, define inductively

Va,i = Va,i−1 + gr(jc − jc+v | c ∈ A, v ∈ Va,i−1).

Let Va =
∑∞

i=1 Va,i . Note that Va =
⋃∞

i=1 Va,i ⊆ A.

Theorem 12
The solution (A2, r) is simple if and only if Va = A for every a ∈ A, a 6= 0.

A modification of this approach allows also to construct several concrete
examples of simple solutions of size nm2, for every n,m > 1.
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2. Recall that a non-zero left brace B is simple if {0} and B are the only
ideals of B.

Theorem 13
Let B be a finite non-trivial simple left brace such that there exists an
orbit X ⊆ B under the action of the lambda map such that B = gr(X )+.
Then the solution (X , r) of the YBE, where

r(x , y) = (λx (y), λ−1
λx (y)(x)), for all x , y ∈ X ,

is a simple solution of the YBE.

Several classes of simple left braces have been recently constructed
(Bachiller, Cedó, Jespers, JO). They can be used in this context.

In particular, for every distinct primes p1, . . . , pn there exist integers
k1, . . . , kn such that for every m1 > k1, . . . ,mn > kn there exists a simple
left brace of size pm1 · · · pmn .
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Solutions of square-free cardinality
The main result is quite surprising and it reads as follows.

Theorem 14
Let n be a positive integer. Let p1, . . . , pn be distinct prime numbers.
Let (X , r) be an indecomposable solution of the YBE of cardinality
|X | = p1 · · · pn. Then (X , r) is a multipermutation solution of level ≤ n.
In particular, (X , r) is not a simple solution if n > 1.

The proof is based on a detailed study of the brace structure on the
permutation group G(X , r) associated to such a solution.

It goes by induction on n.

But first, the structure of G(X , r) is described in the case of
multipermutation solutions (used in the inductive step);
this assumption is then removed in the proof of the main theorem!
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Theorem 15
Let p1, . . . , pn be distinct prime numbers. Assume that (X , r) is an
indecomposable multipermutation solution of the YBE of cardinality
p1 · · · pn. Let Pi be the Sylow pi -subgroup of the additive group of the
left brace G(X , r), for i = 1, . . . , n. Then the following conditions hold.

(i) Every Pi is a trivial brace over an elementary abelian pi -group.
(ii) There exists a permutation σ ∈ Symn such that

Pσ(1) ⊆ Pσ(1)Pσ(2) ⊆ · · · ⊆ Pσ(1)Pσ(2) · · ·Pσ(n) = G(X , r)

are ideals of the left brace G(X , r), Pσ(1) ⊆ Soc(G(X , r)) and

(Pσ(1) · · ·Pσ(i))/(Pσ(1) · · ·Pσ(i−1)) ⊆ Soc(G(X , r)/(Pσ(1) · · ·Pσ(i−1)))

for every 1 < i ≤ n.

In particular, |X | and |G(X , r)| have the same prime divisors.
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Tools 1: inductive step
If n = 1, (X , r) is a permutation solution with G(X , r) ' Cp1 , by
Theorem 3.

Let n > 1. By [Cedo, Jespers, Kubat, van Antwerpen, Verwimp, 2023]:
the solution (G(X , r), rG) associated to the left brace G(X , r) is also a
multipermutation solution.

In particular, Soc(G(X , r)) is a nontrivial ideal. Then Soc(G(X , r)) is an
abelian normal subgroup and we choose a Sylow p-subgroup P of
Soc(G(X , r)) for some p.

Then P is normal in G(X , r). And P-orbits on X form a system of
imprimitivity S = {P(x) : x ∈ X} for G(X , r) on X .

So p = pi for some i ; say p = p1. Then |P(x)| = p for x ∈ X and
|S| = p2 · · · pn. And G(X , r) acts on S.

Let K be the kernel of this action. One shows that K = P is an ideal of
G(X , r). Moreover, r induces a solution (S, s) of the YBE.
This allows an inductive step when proving Theorem 15.
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Tools 2: semidirect products of braces
Let B be a left brace. Suppose that I is an ideal of B and L is a left ideal
of B such that I ∩ L = {0} and B = IL. If a ∈ I and b ∈ L, then

b · b−1ab = ab = λa(b) · λ−1
λa(b)(a).

Since I ∩ L = {0}, and b, λa(b) ∈ L, and b−1ab, λ−1
λa(b)(a) ∈ I, we get

λa(b) = b, which means that ab = a + b
for all a ∈ I and b ∈ L.

The map α : (L, ·) −→ Aut(I,+, ·), defined by α(b)(a) = λb(a) for all
a ∈ I and b ∈ L, is a homomorphism of groups.

Then B is the semidirect product I oα L of the left braces I and L;
namely a left brace with addition defined for all a1, a2 ∈ I, b1, b2 ∈ L by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

(The multiplicative group of B is a semidirect product of the
multiplicative groups of I and L.)
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Tools 3: abelian normal Sylow subgroups
The proof of Theorem 14 uses a sufficient condition for retractability of a
solution (X , r).

Lemma 16
Let (X , r) be a solution of the YBE. Then λg (σx ) = σg(x), for all
g ∈ G(X , r) and all x ∈ X.

Theorem 17
Let (X , r) be a solution of the YBE. Suppose that G(X , r) has an abelian
normal Sylow p-subgroup T , for some prime divisor p of |G(X , r)|. Then
(X , r) is retractable.

Proof.
Since the p-Sylow subgroup P of the additive group of the left brace
G(X , r) is a left ideal and |T | = |P|, we get that T = P and it is an ideal
of the left brace G(X , r).
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Let C be the Hall p′-subgroup of the additive group of the left brace
G(X , r). Then G(X , r) = TC is a semidirect product (as left braces) of
the ideal T and the left ideal C .

By using the structure of the semidirect product, we know that
t + c = tc for t ∈ T , c ∈ C , and consequently

λt(t1c1) = −t + tt1c1 = −t + tt1 + c1 = (−t + tt1)c1 = λt(t1)c1 (1)

for all t, t1 ∈ T and c1 ∈ C .

Since T is a finite non-zero left brace with abelian multiplicative group,
by [Rump] Soc(T ) 6= {id}. Let t ∈ Soc(T ) \ {id}. There exists x ∈ X
such that t(x) 6= x . Let tx ∈ T and cx ∈ C be such that σx = txcx .

By Lemma 16 and (1), we get

σt(x) = λt(σx ) = λt(txcx )
(1)
= λt(tx )cx = txcx = σx .

Therefore (X , r) is retractable and the result follows.
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An example

From Theorem 14 wee know that if (X , r) is an indecomposable solution
of the YBE of cardinality p1 · · · pn, where p1, . . . , pn are n distinct prime
numbers, then (X , r) is a multipermutation solution of level ≤ n.

We continue with an example showing that indecomposable solutions of
the YBE of cardinality p1 · · · pn and multipermutation level n indeed exist.

Let (X0, r0) denote the solution of cardinality |X0| = 1.

Let |X1| = p1 and let (X1, r1) be an indecomposable solution of the YBE.
We know that G(X1, r1) = Zp1 .
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Suppose that we have constructed indecomposable solutions (Xi , ri) of
the YBE of cardinality p1 · · · pi , for all 1 ≤ i < n, such that

Ret(Xi , ri) = (Xi−1, ri−1) and G(Xi , ri) ∼= Z|Xi−1|
pi oα G(Xi−1, ri−1),

as left braces, where
α : G(Xi−1, ri−1) −→ Aut(Z|Xi−1|

pi ) is defined by
α(g)((ax )x∈Xi−1) = (ag−1(x))x∈Xi−1 ,

for all g ∈ G(Xi−1, ri−1) and ax ∈ Zpi .

Let Xn = Zpn × Xn−1. We define rn : Xn × Xn −→ Xn × Xn by
rn((a, x), (b, y)) = (σ(a,x)(b, y), σ−1

σ(a,x)(b,y)(a, x))

for all (a, x), (b, y) ∈ Xn, where
σ(a,x)(b, y) = (b + δx ,σx (y), σx (y))

and the permutations σx correspond to the solution (Xn−1, rn−1).

Then (Xn, rn) is an indecomposable solution of permutation level n and
G(Xn, rn) ∼= Zpn o (Zpn−1 o (. . . (Zp2 o Z/p1) . . . )).
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Beyond the square-free case

Theorem 18
Let (X , r) be a finite indecomposable multipermutation solution of the
YBE. Then, for every prime number p

p is a divisor of |X | if and only if p is a divisor of |G(X , r)|.

The proof is based on an induction on n = |X | and on the fact that

G(Ret(X , r)) ∼= G(X , r)/Soc(G(X , r)).

Hence, prime divisors of |X | behave in this case in the same way as in the
case where |X | is square-free.
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Leandro Vendramin found an example of an indecomposable solution
(X , r) of the YBE with |X | = 8, such that G(X , r) ∼= Sym4, showing that
the above result does not hold for irretractable solutions.

The example is determined by the following permutations:

σ1 = (1, 2)(3, 4)(5, 6)(7, 8), σ2 = (1, 2)(3, 6)(4, 7)(5, 8),
σ3 = (1, 5, 4, 3)(2, 6, 7, 8), σ4 = (1, 3, 6, 7)(2, 8, 5, 4),
σ5 = (1, 7)(2, 4)(3, 8)(5, 6), σ6 = (1, 7, 6, 3)(2, 4, 5, 8),
σ7 = (1, 3, 4, 5)(2, 8, 7, 6), σ8 = (1, 5)(2, 6)(3, 8)(4, 7).

Let Y = {1, 2} and let (Y , s) be the unique indecomposable solution of
cardinality 2. Let f : X −→ Y be the map defined by
f (1) = f (4) = f (6) = f (8) = 1 and f (2) = f (3) = f (5) = f (7) = 2.
Then f is an epimorphism of solutions from (X , r) to (Y , s).

So (X , r) is an indecomposable irretractable solution which is not simple.
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