

Fundamental Superalgebras in PI Theory

(joint work with A. Giambruno and E. Spinelli)

Groups, Rings and the Yang-Baxter equation 2023

Elena Pascucci (elena.pascucci@uniroma1.it) Sapienza Università di Roma

June 23rd

Polinomial identities

Fix a field F. Some notations:

- A is an associative algebra,
- $X := \{x_1, x_2, \dots\}$ is a countable set,
- $F\langle X \rangle$ is the free associative algebra over F generated by X.

Definition

An element $f(x_1, ..., x_n)$ of $F\langle X \rangle$ is a **polynomial identity** (or a PI) for A if $f(a_1, ..., a_n) = O_A$ for every $a_1, ..., a_n \in A$. A is a **PI-algebra** if A satisfies a non-trivial polynomial identity $f \neq O_{F\langle X \rangle}$. Let $Id(A) := \{f \mid f \in F\langle X \rangle, f PI \text{ for } A\}$.

Graded polynomial identities

Some notations:

- A is an associative superalgebra (i.e. $A = A^{(o)} \oplus A^{(1)}$ s.t. $A^{(i)}A^{(j)} \subseteq A^{(i+j)}$ for every $i, j \in \mathbb{Z}_2$),
- $Y:=\{y_1,y_2,\dots\}$ and $Z:=\{z_1,z_2,\dots\}$ are (disjoint) countable sets,
- F⟨Y ∪ Z⟩ is the free associative algebra over F generated by Y ∪ Z (~→ structure of superalgebra: deg y_i = 0, deg z_i = 1 for every i ≥ 1).

Definition

An element $f(y_1, \ldots, y_m, z_1, \ldots, z_n)$ of $F\langle Y \cup Z \rangle$ is a \mathbb{Z}_2 -graded polynomial identity or a superidentity ($f \equiv o$) for a superalgebra $A = A^{(o)} \oplus A^{(1)}$ if $f(a_1, \ldots, a_m, b_1, \ldots, b_n) = o_A$ for every $a_1, \ldots, a_m \in A^{(o)}$ and $b_1, \ldots, b_n \in A^{(1)}$.

Graded polynomial identities

In what follows, *F* will be an algebraically closed field of characteristic zero. A central object in the theory is:

$Id_2(A)$

the set of all \mathbb{Z}_2 -graded polynomial identities satisfied by A

Fact

 $Id_2(A)$ is a T_2 -ideal, i.e. a two-sided ideal of the free superalgebra stable under every graded endomorphism of the free superalgebra, completely determined by the *multilinear polynomials* it contains.

Specht Problem 2 Historical Motivations

One of the main questions in PI theory is

Specht Problem, 1950

Char F=O, A a PI-algebra \Rightarrow Id(A) is finitely generated as a T ideal?

Specht Problem 2 Historical Motivations

One of the main questions in PI theory is

Specht Problem, 1950

Char F=O, A a PI-algebra \Rightarrow Id(A) is finitely generated as a T ideal?

A positive solutions was given by Kemer in 1987.

One of the main steps of the proof is the following

Kemer's Representability Theorem

Let A be a PI-finitely generated (super)algebra over a field F of characteristic zero. Then there exists a finite-dimensional (super)algebra over a field extension of F which has the same (graded) polynomial identities of A.

The Role of Fundamental Superablgebras 2 Historical Motivations

One of the tools to prove Kemer's Representability Theorem was the introduction of the so called **fundamental (super)algebras**. The main reason lies on one of their properties.

Any finite-dimensional (super)algebra has the same (graded) identities as a finite direct sum of fundamental (super)algebras.

Algebra index 3 Fundamental Algebras

Fix a finite-dimensional algebra A.

Wedderburn Malcev Decomposition

 $A = A_{ss} + J(A),$

where J(A) is the **Jacobson radical** (which is a nilpotent ideal of nilpotency index $s_A + 1$) and where A_{ss} is a **maximal semisimple subalgebra** of A. A_{ss} can be written as a direct sum of simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Algebra index 3 Fundamental Algebras

Fix a finite-dimensional algebra A.

Wedderburn Malcev Decomposition

 $A = A_{ss} + J(A),$

where J(A) is the **Jacobson radical** (which is a nilpotent ideal of nilpotency index $s_A + 1$) and where A_{ss} is a **maximal semisimple subalgebra** of A. A_{ss} can be written as a direct sum of simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Definition

The t- $s(A) := (dim_F(A_{ss}), s_A)$ is said to be the **algebra index** of A.

Understanding Fundamental Algebras 3 Fundamental Algebras

Remark: we can always restrict our attention on evaluations on a given fixed <u>basis</u> of our algebra.

Facts

If *f* is alternating in $d > dim_F(A)$ variables, then $f \in Id(A)$.

Now assume that you have a polynomial f alternating in an arbitrary number of sets each with $d \leq \dim_F(A_{ss})$ variables. It might be that there exists a non-zero evaluation in A_{ss} . Now if you allow some of these sets (say s) to be of cardinality $\dim_F(A_{ss}) + 1$, you might find a non-zero evaluation on A only if you require that $s \leq s_A$, where $s_A + 1$ is the nilpotency index of J(A).

So in some sense a *fundamental algebra* is an "extreme" algebra, in the sense that it realizes the maximal possible number of alternations.

Understanding Fundamental Algebras 3 Fundamental Algebras

(almost a) Definition

A is **fundamental** if there exists a polynomial $f \notin Id(A)$ which is alternating in an arbitrary number of sets, each of cardinality $dim_F(A_{ss})$, and which is also alternating in s_A sets of cardinality $dim_F(A_{ss}) + 1$.

Fix a finite-dimensional superalgebra A.

Wedderburn Malcev Decomposition (graded version)

$$A = A_{ss} + J(A),$$

where J(A) is the **Jacobson radical** (which is a homogeneous nilpotent ideal) and where A_{ss} is a **maximal semisimple subalgebra** of A having an induced \mathbb{Z}_2 -grading. A_{ss} can be written as a direct sum of graded simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Fix a finite-dimensional superalgebra A.

Wedderburn Malcev Decomposition (graded version)

$$A = A_{ss} + J(A),$$

where J(A) is the **Jacobson radical** (which is a homogeneous nilpotent ideal) and where A_{ss} is a **maximal semisimple subalgebra** of A having an induced \mathbb{Z}_2 -grading. A_{ss} can be written as a direct sum of graded simple algebras: $A_{ss} = A_1 \oplus \ldots \oplus A_n$.

Definition

The **first algebra superindex** of A is the pair $(t_{A,o}, t_{A,1}) := (\dim_F A_{ss}^{(o)}, \dim_F A_{ss}^{(1)})$, whereas its **second algebra superindex** is s_A , where $s_A + 1$ is the nilpotency index of J(A). The triple t- $s_2(A) := (t_{A,o}, t_{A,1}; s_A)$ is said to be the **algebra superindex** of A.

If t_0, t_1, ν are integers, an element $f \in F\langle Y \cup Z \rangle$ is said to be ν -fold (t_0, t_1) -alternating if, for all $i \in [1, \nu] := \{1, 2, ..., \nu\}$, there exist sets of variables $Y_i \subseteq Y$ and $Z_i \subseteq Z$ with $|Y_i| = t_0$ and $|Z_i| = t_1$ such that f is alternating in each Y_i and in each Z_i .

If t_o, t_1, ν are integers, an element $f \in F\langle Y \cup Z \rangle$ is said to be ν -fold (t_o, t_1) -alternating if, for all $i \in [1, \nu] := \{1, 2, ..., \nu\}$, there exist sets of variables $Y_i \subseteq Y$ and $Z_i \subseteq Z$ with $|Y_i| = t_o$ and $|Z_i| = t_1$ such that f is alternating in each Y_i and in each Z_i .

Definition

The **first Kemer superindex** of $I := Id_2(A)$ is the maximum (if exists), in the lexicographic order, of the pairs of numbers (t_0, t_1) such that, for all $\nu \in \mathbb{N}$, there is an element $f \in F\langle Y \cup Z \rangle \setminus I$ which is ν -fold (t_0, t_1) -alternating. If (t_0, t_1) is the first Kemer superindex of I, its **second Kemer superindex** is the maximum integer s = a + b for which, for every integer ν , there exists a ν -fold (t_0, t_1) -alternating polynomial $f \in F\langle Y \cup Z \rangle \setminus I$ which is *a*-fold alternating in layers of degree 0 variables with $t_0 + 1$ elements and *b*-fold alternating in layers of degree 1 variables with $t_1 + 1$ elements.

The **Kemer superindex** of a superalgebra A is the triple $Ind_2(A) := (t_0, t_1; s)$.

Main Definition 4 Fundamental Superalgebras

Fact

$Ind_2(A) \leq t-s_2(A)$

in the lexicographic order.

Definition

A is **fundamental** if and only if $Ind_2(A) = t - s_2(A)$.

Recap on Simple Superalgebras 4 Fundamental Superalgebras

A \mathbb{Z}_2 -grading on M_m is called **elementary** if there exists an *m*-tuple $(g_1, \ldots, g_m) \in \mathbb{Z}_2^m$ such that $e_{ij} \in M_m^{(g)}$ if, and only if, $g = g_i - g_j$. Equivalently, we can define a map $\alpha : [1, m] \longrightarrow \mathbb{Z}_2$ inducing a grading on M_m setting the degree of e_{ij} equal to $\alpha(i) - \alpha(j)$.

Let A be a simple superalgebra. A is (isomorphic to) a superalgebra of the following type

Examples of Fundamental Superalgebras

4 Fundamental Superalgebras

Proposition

Every finite-dimensional simple superalgebra is fundamental.

Why? Just to have an idea, let us look an example. Consider $M_2 + tM_2$. It is clear that $t-s_2(M_2 + tM_2) = (4, 4; 0)$.

 $e_{1,1}\tilde{e}_{1,1}e_{1,1}\tilde{e}_{1,2}e_{2,2}\tilde{e}_{2,2}e_{2,2}\tilde{e}_{2,1}e_{1,1}\ldots e_{1,1}\overline{te_{1,1}}e_{1,1}\overline{te_{1,2}}e_{2,2}\overline{te_{2,2}}e_{2,2}\overline{te_{2,1}}e_{1,1}\ldots,$

where we have used this notation: $\bar{x}_1 \dots \bar{x}_n := \sum_{\sigma \in S_n} (-1)^{\sigma} x_{\sigma(1)} \dots x_{\sigma(n)}$ (or with other fancy symbols).

From this product, which is obvious non-zero (equal to $e_{1,1}$), it can be built a graded polynomial, ν -fold (4, 4)-alternating, outside $Id_2(M_2 + tM_2)$ with this non-zero evaluation.

Upper block triangular matrix algebras 5 New Results

Let $((A_1, \alpha_1) \dots, (A_n, \alpha_n))$ be a sequence of simple superalgebras.

$$s_j := \begin{cases} k_j + l_j & \text{if } A_j \cong M_{k_j, l_j}, \\ 2n_j & \text{if } A_j \cong M_{n_j} + tM_{n_j} \end{cases}, \ s'_j := \begin{cases} k_j & \text{if } A_j \cong M_{k_j, l_j}, \\ n_j & \text{if } A_j \cong M_{n_j} + tM_{n_j} \end{cases}$$

and set $\eta_0 := 0$, $\eta_j := \sum_{i=1}^j s_i$ and $Bl_j := [\eta_{j-1} + 1, \eta_j]$. In particular $\eta_n = \sum_{i=1}^n s_i$. Let $\mathbf{U} := \{(a_{ij})_{i,j\in[1,n]} \mid a_{ij} \in M_{s_i \times s_j} \text{ if } 1 \le i \le j \le n \text{ and } a_{ij} = O_{M_{s_i \times s_j}} \text{ otherwise}\} \subseteq M_{\eta_n}$ (the upper block triangular matrix algebra of size s_1, \ldots, s_n).

Upper block triangular matrix algebras 5 New Results

Finally, let us define

$$UT(A_1,...,A_n) := \left\{ (a_{ij}) \in \mathbf{U} \mid a_{kk} = \begin{pmatrix} C & D \\ D & C \end{pmatrix}, \ C, D \in M_{s'_k} \ \forall k \in \Gamma_1 \right\}. \text{ Let}$$
$$\alpha : [1,\eta_n] \longrightarrow \mathbb{Z}_2, \qquad i \longmapsto \alpha_k(i-\eta_{k-1})$$

and, for any *n*-tuple $\tilde{g} := (g_1, \dots, g_n) \in \mathbb{Z}_2^n$,

$$\alpha_{\tilde{g}}: [1, \eta_n] \longrightarrow \mathbb{Z}_2, \qquad i \longmapsto g_k + \alpha(i),$$

where $k \in [1, n]$ is the (unique) integer such that $i \in Bl_k$. Denote any such a \mathbb{Z}_2 -graded algebra (regardless of \tilde{g}) by $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$.

Why are we studying these algebras?

Theorem [O.M. Di Vincenzo, V.R.T. da Silva, E. Spinelli]

A variety of \mathbb{Z}_2 -graded PI-algebras of finite basic rank is minimal of superexponent $d \ge 2$ if, and only if, it is generated by a \mathbb{Z}_2 -graded algebra $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$ satisfying $\dim_F(A_1 \oplus \ldots \oplus A_n) = d$.

Why are we studying these algebras?

Theorem [O.M. Di Vincenzo, V.R.T. da Silva, E. Spinelli]

A variety of \mathbb{Z}_2 -graded PI-algebras of finite basic rank is minimal of superexponent $d \ge 2$ if, and only if, it is generated by a \mathbb{Z}_2 -graded algebra $UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$ satisfying $\dim_F(A_1 \oplus \ldots \oplus A_n) = d$.

We have proved:

Theorem [A. Giambruno, P, E. Spinelli]

The superalgebras $UT_{\mathbb{Z}_2}(A_1,\ldots,A_n)$ are fundamental.

Upper block triangular matrix algebras with identification 5 New Results

Let (A_1, \ldots, A_n) be a sequence of simple superalgebras for which there exist $1 \le i < j \le n$ such that $A_i \cong A_j$. Consider the superalgebra $B := UT_{\mathbb{Z}_2}(A_1, \ldots, A_n)$ with grading defined by the map $\alpha_{\tilde{g}}$, and its subalgebra, $A := UT_{\mathbb{Z}_2}^{(i,j)}(A_1, \ldots, A_n)$, obtained from B by "gluing" A_i and A_j . We notice that J(A) = J(B), whereas dim_F $A_{ss} = \dim_F B_{ss} - \dim_F A_i$.

Theorem [A. Giambruno, P, E. Spinelli]

The superalgebra A is fundamental if, and only if,

1. either $j \neq i + 1$;

2. or
$$j = i + 1$$
 and $A_i \cong M_{n_i} + tM_{n_i}$;

3. or
$$j = i + 1$$
, $A_i \cong M_{k_i, l_i}$ and $g_{i+1} = g_i + 1$.

Cocharacters 5 New Results

Let $P_n^{\mathbb{Z}_2}$ is the space of multilinear polynomials of degree *n* of $F\langle Y \cup Z \rangle$ in the variables $y_1, \ldots, y_n, z_1, \ldots, z_n$.

Facts

- the hyperoctahedral group $H_n = \mathbb{Z}_2 \wr S_n$ (namely the wreath product of \mathbb{Z}_2 and the symmetric group S_n) acts on $P_n^{\mathbb{Z}_2}$,
- $P_n^{\mathbb{Z}_2} \cap Id_2(A)$ is invariant under this action,
- the space $P_n^{\mathbb{Z}_2}(A) := \frac{P_n^{\mathbb{Z}_2}}{P_n^{\mathbb{Z}_2} \cap \operatorname{Id}_2(A)}$ has a structure of left H_n -module, whose character, $\chi_n^{\mathbb{Z}_2}(A)$, is called the *n*-th \mathbb{Z}_2 -graded cocharacter of A,
- {irreducible H_n -representations}/ $\sim \stackrel{\text{1:1}}{\longleftrightarrow} \{(\lambda, \mu), \lambda \vdash r, \mu \vdash n r, r \in [0, n]\}.$

A characterization through cocharacters 5 New Results

So, by the previous facts, it makes sense to write:

$$\chi_n^{\mathbb{Z}_2}(\mathsf{A}) = \sum_{r=0}^n \sum_{\substack{\lambda \vdash r \\ \mu \vdash n-r}} m_{\lambda,\mu} \chi_{\lambda,\mu}.$$

Theorem [A. Giambruno, P, E. Spinelli]

Let A be a finite-dimensional superalgebra with algebra superindex $(d_0, d_1; s)$. Then A is fundamental if, and only if, for any *n* large enough, there exist $r \in [0, n]$, $\lambda := (\lambda_1, \ldots, \lambda_t) \vdash r$ and $\mu := (\mu_1, \ldots, \mu_u) \vdash n - r$ with $\lambda_{d_0+1} + \cdots + \lambda_t = a$ and $\mu_{d_1+1} \cdots + \mu_u = b$ such that a + b = s and $m_{\lambda,\mu} \neq 0$ in $\chi_n^{\mathbb{Z}_2}(A)$.

Thank you for listening! :D