On central nilpotency and solubity of skew left braces and solutions of the Yang-Baxter equation

Vicent Pérez Calabuig*
Universitat de València

* Joint work with Adolfo Ballester Bolinches and Ramon Esteban Romero

Groups, rings and the Yang-Baxter equation
Blankenberge, 2023

- A skew left brace $(B,+, \cdot)$ is a set endowed with two group structures, $(B,+)$ and (B, \cdot), such that

$$
a(b+c)=a b-a+a c \quad \forall a, b, c \in B
$$

- Two of the most studied properties of non-degenerate solutions: decomposability and multipermutability.
- P. Etingof, T. Schedler and A. Soloviev (1999), Set theoretical solutions to the Yang-Baxter Equation, Duke Math. J, 100(2), 169-209.
- Algebraic framework for these properties: solubility and central nilpotency of skew left braces.
- Solutions: non-degenerate set-theoretic solutions of the YBE.
- Braces: skew left braces.
- Let \mathfrak{X} be a class of groups: B is a brace of \mathfrak{X}-type if $(B,+) \in \mathfrak{X}$. For example, Rump's left braces are braces of abelian type.
- $\lambda:(B, \cdot) \rightarrow \operatorname{Aut}(B,+), \lambda_{a}(b)=-a+a b$.
- *-product: $a * b=\lambda_{a}(b)-b=-a+a b-b$.
- A trivial brace B is a brace such that $a+b=a b$ for every $a, b \in B$; equivalently, $a * b=0$ for every $a, b \in B$.
- Given two subsets $X, Y \subseteq B$, $X * Y=\langle x * y: x \in X, y \in Y\rangle_{+}$.
- Algebraic substructures of a brace:
- A subbrace S of B is a subgroup of the additive group which is also a subgroup of the multiplicative group.
- A left ideal L of B is a λ-invariant subbrace. If $(L,+) \unlhd(B,+)$ then, L is a strong left ideal.
- An ideal I of B is a strong left ideal, such that $(I, \cdot) \unlhd(B, \cdot)$.
- $\operatorname{Fix}(B):=\left\{a \in B: \lambda_{b}(a)=a, \forall b \in B\right\}$ is a left ideal.
- $\operatorname{Soc}(B):-\{a \in B: a b=a+b-b+a, \forall b \in B\}=$ $\operatorname{Ker} \lambda \cap Z(B,+)$ is an ideal.
- Algebraic substructures of a brace:
- A subbrace S of B is a subgroup of the additive group which is also a subgroup of the multiplicative group.
- A left ideal L of B is a λ-invariant subbrace. If $(L,+) \unlhd(B,+)$ then, L is a strong left ideal.
- An ideal I of B is a strong left ideal, such that $(I, \cdot) \unlhd(B, \cdot)$.
- $\operatorname{Fix}(B):=\left\{a \in B: \lambda_{b}(a)=a, \forall b \in B\right\}$ is a left ideal.
- $\operatorname{Soc}(B):=\{a \in B: a b=a+b=b+a, \forall b \in B\}=$ $\operatorname{Ker} \lambda \cap \mathrm{Z}(B,+)$ is an ideal.
- Given I, J ideals of a brace B with $J \subseteq I$, we say that I / J is a chief factor if I / J is a minimal ideal of B / J.
- An ideal series of a brace B is a sequence of ideals of B :

$$
I_{0}=0 \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=B
$$

- A chief series is an ideal series such that I_{k} / I_{k-1} is a chief factor, for every $1 \leq k \leq n$.
- A solution (X, r) is said to be decomposable if there exists a non-trivial partition $X=X_{1} \cup X_{2}$ such that $r\left(X_{i} \times X_{j}\right)=X_{j} \times X_{i}$ for every $i, j \in\{1,2\}$.
- A solution (X, r) is said to be decomposable if there exists a non-trivial partition $X=X_{1} \cup X_{2}$ such that $r\left(X_{i} \times X_{j}\right)=X_{j} \times X_{i}$ for every $i, j \in\{1,2\}$.

Proposition

Let B be a brace and $\left(B, r_{B}\right)$ its associated solution. Assume that B has an strong left ideal I. Then, $\left(B, r_{B}\right)$ is decomposable as $B=I \cup(B \backslash I)$.

The richer is the ideal structure of a brace the more decomposable is its associated solution.

- A solution (X, r) is said to be decomposable if there exists a non-trivial partition $X=X_{1} \cup X_{2}$ such that $r\left(X_{i} \times X_{j}\right)=X_{j} \times X_{i}$ for every $i, j \in\{1,2\}$.

Proposition

Let B be a brace and $\left(B, r_{B}\right)$ its associated solution. Assume that B has an strong left ideal I. Then, $\left(B, r_{B}\right)$ is decomposable as $B=I \cup(B \backslash I)$.

The richer is the ideal structure of a brace the more decomposable is its associated solution.

Soluble braces

Let B be a brace.

- A previous definition: consider the series of iterated star products

$$
B_{1}=B \supseteq B_{2}=B_{1} * B_{1} \supseteq \ldots \supseteq B_{n}=B_{n-1} * B_{n-1} \supseteq \ldots
$$

Then, B is soluble if there exists $n_{0} \in \mathbb{N}$ such that $B_{n_{0}}=0$.

- Every trivial brace is soluble \Rightarrow every group as a trivial brace is soluble.

Soluble braces

Let B be a brace.

- A previous definition: consider the series of iterated star products

$$
B_{1}=B \supseteq B_{2}=B_{1} * B_{1} \supseteq \ldots \supseteq B_{n}=B_{n-1} * B_{n-1} \supseteq \ldots
$$

Then, B is soluble if there exists $n_{0} \in \mathbb{N}$ such that $B_{n_{0}}=0$.

- Every trivial brace is soluble \Rightarrow every group as a trivial brace is soluble.
- It is convenient to have a useful definition of commutator of ideals

Soluble braces

Let B be a brace.

- A previous definition: consider the series of iterated star products

$$
B_{1}=B \supseteq B_{2}=B_{1} * B_{1} \supseteq \ldots \supseteq B_{n}=B_{n-1} * B_{n-1} \supseteq \ldots
$$

Then, B is soluble if there exists $n_{0} \in \mathbb{N}$ such that $B_{n_{0}}=0$.

- Every trivial brace is soluble \Rightarrow every group as a trivial brace is soluble.
- It is convenient to have a useful definition of commutator of ideals
- D. Bourn, A. Facchini and M. Pompili (2022), Aspects of the category SKB of skew braces, Comm. Algebra, 51(5), 2129-2143.

Definition

Let B be a brace and let I, J be ideals of B. The commutator $[I, J]$ in B is defined as

$$
[I, J]_{B}:=\left\langle[I, J]_{+},[I, J] .,\{i j-(i+j): i \in I, j \in J\}\right\rangle
$$

Soluble braces

Let B be a brace. We define:

- $\partial(B)=[B, B]_{B}$, the commutator ideal or derived ideal of B.
- B is said to be abelian if $\partial(B)=0$; equivalently, B is a trivial brace with abelian group structure.
- A derived series of B :

$$
\begin{aligned}
B & =\partial_{0}(B) \supseteq \partial_{1}(B)=\partial(B) \supseteq \ldots \\
& \supseteq \partial_{n}(B)
\end{aligned}=\left[\partial_{n-1}(B), \partial_{n-1}(B)\right]_{B} \supseteq .
$$

Definition

Let B be a brace and let I, J be ideals of B. The commutator $[I, J]$ in B is defined as

$$
[I, J]_{B}:=\left\langle[I, J]_{+},[I, J] .,\{i j-(i+j): i \in I, j \in J\}\right\rangle
$$

Soluble braces

Let B be a brace. We define:

- $\partial(B)=[B, B]_{B}$, the commutator ideal or derived ideal of B.
- B is said to be abelian if $\partial(B)=0$; equivalently, B is a trivial brace with abelian group structure.
- A derived series of B :

$$
\begin{aligned}
B=\partial_{0}(B) & \supseteq \partial_{1}(B)=\partial(B) \supseteq \ldots \\
& \supseteq \partial_{n}(B)
\end{aligned}=\left[\partial_{n-1}(B), \partial_{n-1}(B)\right]_{B} \supseteq \ldots .
$$

- B is said to be soluble if there exists n_{0} such that $\partial_{n_{0}}(B)=0$.

Proposition

A brace B is soluble if, and only if, it has an abelian series, that is a decreasing sequence of ideals

$$
I_{0}=B \supseteq I_{1} \supseteq \ldots \supseteq I_{n}=0
$$

such that I_{k} / I_{k+1} is abelian for every $0 \leq k \leq n-1$. In such a case, $\partial_{k}(B) \subseteq I_{k}$, for every $0 \leq k \leq n$.
Therefore, the derived length of a soluble brace B is the smallest length of an abelian series of B.

Theorem

Let B be a soluble brace with a chief series. Then, each chief factor is abelian and it is either complemented or included in the intersection of all maximal subbraces.
Moreover, if B is finite, then

- Each chief factor is as a trivial brace isomorphic to an elementary abelian p-group for some prime p
- Every maximal subbrace has a prime power index as a subgroup of both $(B,+)$ and (B, \cdot).

Multidecomposable solutions

Definition
Let (X, r) be a solution and let $\mathcal{P}=\left\{X_{i} \subseteq X: i \in I\right\}$ be a (uniform) partition of X. We say that (X, r) is (uniformly) \mathcal{P}-decomposable if $r\left(X_{i} \times X_{j}\right)=X_{j} \times X_{i}$ for every $i, j \in I$.

Definition

Let (X, r) be a solution and let $X_{n} \subseteq X_{n-1} \subseteq$
a finite descending sequence of subsets of X with $\left|X_{n}\right|=1$ Assume that for every $0 \leq i \leq n-1$, there exists a (uniform) partition \mathcal{P}_{i} of X_{i} such that $X_{i+1} \in \mathcal{P}_{i}$ and $\left(X_{i},\left.r\right|_{X_{i} \times X_{i}}\right)$ is (uniformly) \mathcal{P}_{i}-decomposable. Then, we say that (X, r) is (uniformly) multidecomposable of level n.

Definition

Let (X, r) be a solution and let $\mathcal{P}=\left\{X_{i} \subseteq X: i \in I\right\}$ be a (uniform) partition of X. We say that (X, r) is (uniformly) \mathcal{P}-decomposable if $r\left(X_{i} \times X_{j}\right)=X_{j} \times X_{i}$ for every $i, j \in I$.

Definition

Let (X, r) be a solution and let $X_{n} \subseteq X_{n-1} \subseteq \ldots X_{1} \subseteq X_{0}=X$ be a finite descending sequence of subsets of X with $\left|X_{n}\right|=1$. Assume that for every $0 \leq i \leq n-1$, there exists a (uniform) partition \mathcal{P}_{i} of X_{i} such that $X_{i+1} \in \mathcal{P}_{i}$ and $\left(X_{i},\left.r\right|_{X_{i} \times X_{i}}\right)$ is (uniformly) \mathcal{P}_{i}-decomposable. Then, we say that (X, r) is (uniformly) multidecomposable of level n.

Theorem

Let B be a soluble brace. Then its associated solution $\left(B, r_{B}\right)$ is uniformly multidecomposable.

Theorem

Let (X, r) be a solution such that $G(X, r)$ is a soluble brace. Assume that $G(X, r)$ has an abelian descending series

$$
G(X, r)=I_{0} \supseteq I_{1} \supseteq \ldots \supseteq I_{n}=0
$$

such that $X \cap I_{n-1}$ is not empty. Then (X, r) is multidecomposable.

Central nilpotency

Central nilpotency \rightarrow Strong nilpotency $\rightarrow\left\{\begin{array}{l}\text { Right nilpotency } \\ \text { Left nilpotency }\end{array}\right.$

Centrally nilpotent braces

Let B be a brace:

- $\zeta(B)=\operatorname{Soc}(B) \cap \operatorname{Fix}(B)=$

$$
=\{a \in B: b+a=a+b=a b=b a, \forall b \in B\}
$$

is an ideal of B

- Catino Colazzo and Stefanelli (2019), Skew left braces with non-trivial annihilator, J. Algebra App., 18(2)
- given I, J ideals of B with $J \subseteq I, I / J$ is a central factor if $I / J \subseteq \zeta(B / J)$

Central nilpotency \rightarrow Strong nilpotency $\rightarrow\left\{\begin{array}{l}\text { Right nilpotency } \\ \text { Left nilpotency }\end{array}\right.$

Centrally nilpotent braces

Let B be a brace:

- $\zeta(B)=\operatorname{Soc}(B) \cap \operatorname{Fix}(B)=$

$$
=\{a \in B: b+a=a+b=a b=b a, \forall b \in B\}
$$

is an ideal of B.

- Catino, Colazzo and Stefanelli (2019), Skew left braces with non-trivial annihilator, J. Algebra App., 18(2).
- given I, J ideals of B with $J \subseteq I, I / J$ is a central factor if $I / J \subseteq \zeta(B / J)$.

Definition

A brace B is defined to be centrally nilpotent if it has a central series, that is

$$
I_{0}=0 \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=B
$$

such that I_{k} / I_{k-1} is a central factor for every $1 \leq k \leq n$.

- M. Bonatto and P. Jedlička (2022), Central nilpotency of skew braces, J. Algebra App., online.

Definition

A brace B is defined to be centrally nilpotent if it has a central series, that is

$$
I_{0}=0 \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=B
$$

such that I_{k} / I_{k-1} is a central factor for every $1 \leq k \leq n$.

- M. Bonatto and P. Jedlička (2022), Central nilpotency of skew braces, J. Algebra App., online.

Centrally nilpotent braces are soluble.

Central series

Given B a brace, we can define canonical central series

1) $\zeta_{0}(B)=0 \quad \zeta_{n+1}(B)$ is the ideal such that $\zeta_{n+1}(B) / \zeta_{n}(B)=\zeta\left(B / \zeta_{n}(B)\right)$;
2) $\Gamma_{1}(B)=B ; \quad \Gamma_{n+1}(B)=\left\langle\Gamma_{n}(B) * B, B * \Gamma_{n}(B),\left[\Gamma_{n}(B), B\right]_{+}\right\rangle_{+}$;
3) $\Gamma_{[1]}(B)=B$;
$\Gamma_{[n]}(B)=\left\langle\Gamma_{[i]}(B) * \Gamma_{[n-i]}, \Gamma_{[n-i]} * \Gamma_{[i]}(B),\left[\Gamma_{[i]}(B), \Gamma_{[n-i]}(B)\right]_{+}:\right.$
$: 1 \leq i \leq n-1\rangle_{+}$

Theorem (BJ22, JVV23)

Let B be a brace. The following statements are equivalent

- B is centrally nilpotent.
- There exists $n \in \mathbb{N}$ such that $\zeta_{n}(B)=B$.
- There exists $n \in \mathbb{N}$ such that $\Gamma_{n+1}(B)=0$.
- There exists $c \in \mathbb{N}$ such that $\Gamma_{[c]}(B)=0$.
- E. Jespers, A. Van Antwerpen and L. Vendramin (2023), Central nilpotency of skew braces, Comm. Contemp. Math., online.

Question

(1) Does the lower and the upper central series play an analogous role that in group theory? Is there a centrally nilpotent class?
(2) For every $n \in \mathbb{N}$, does it follow $\Gamma_{n+1}(B)=\left[\Gamma_{n}(B), B\right]_{B}$?
(3) Given I, J ideals of a brace B, what is the relation between $[I, J]_{B}$ and $\left\langle I * J, J * I,[I, J]_{+}\right\rangle_{+}$?

Question

(1) Does the lower and the upper central series play an analogous role that in group theory? Is there a centrally nilpotent class?
(2) For every $n \in \mathbb{N}$, does it follow $\Gamma_{n+1}(B)=\left[\Gamma_{n}(B), B\right]_{B}$?
(3) Given I, J ideals of a brace B, what is the relation between $[I, J]_{B}$ and $\left\langle I * J, J * I,[I, J]_{+}\right\rangle_{+}$?

Theorem

Let B be a brace and let I, J be ideals of B. Then,
(1) $I * J+J * I+[I, J]_{+}$is a left ideal.
(2) $\left\langle I * J+J * I+[I, J]_{+}\right\rangle=\left\langle[I, J]_{+},[I, J]\right.$., $\{i j-(i+j): i \in$ $I, j \in J\}\rangle_{+}$. Therefore, $[I, J]_{B}=\left\langle I * J+J * I+[I, J]_{+}\right\rangle$.

Corollary

Let B be a brace. $\Gamma_{1}(B)=B$ and
$\Gamma_{n}(B)=\Gamma_{n-1}(B) * B+B * \Gamma_{n-1}+\left[\Gamma_{n-1}(B), B\right]_{+}=\left[\Gamma_{n-1}(B), B\right]_{B}$ for every $n \in \mathbb{N}$.

Corollary

Let $0=I_{0} \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=B$ a central series of a centrally nilpotent brace B. The following hold
(1) For every $0 \leq j \leq n, l_{j} \subseteq \zeta_{j}(B)$. In particular, $\zeta_{n}(B)=B$.
(2) For every $1 \leq j \leq n+1, \Gamma_{j}(B) \subseteq I_{n-j+1}$. In particular, $\Gamma_{n+1}(B)=0$.
Then, the centrally nilpotent class of B is equal to the length of the upper and lower central series of B.

Definition

Let I be an ideal of a brace B. We say that I is centrally nilpotent, if so it is as brace.
We say that I is centrally nilpotent respect to B if there exists a sequence of ideals in B

$$
I_{0}=0 \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=I
$$

such that $I_{k} / I_{k-1} \subseteq \zeta\left(I / I_{k-1}\right)$ for every $1 \leq k \leq n$.

A Fitting ideal

Definition

Let I be an ideal of a brace B. We say that l is centrally nilpotent, if so it is as brace.
We say that I is centrally nilpotent respect to B if there exists a sequence of ideals in B

$$
I_{0}=0 \subseteq I_{1} \subseteq \ldots \subseteq I_{n}=I
$$

such that $I_{k} / I_{k-1} \subseteq \zeta\left(I / I_{k-1}\right)$ for every $1 \leq k \leq n$.

Theorem

Let B be a finite brace. Then, B is centrally nilpotent if, and only if, every Sylow p-subgroup is a centrally nilpotent ideal.

Theorem

Let I, J be ideals respect to B. Then, $I J=I+J$ is also centrally nilpotent respect to B.

Definition

We define Fit (B), the Fitting ideal of a brace, as the ideal generated by all centrally nilpotent ideals respect to B.

Theorem

Assume that B is a brace satisfying the maximal condition on ideals. Then, $\operatorname{Fit}(B)$ is centrally nilpotent respect to B.

Theorem

Fit (B) is the intersection of the centralisers in B of all chief factors in B.

Theorem

If B is a soluble brace, then $C_{B}(\operatorname{Fit}(B)) \subseteq \operatorname{Fit}(B)$.

Here, given an ideal I of a brace $B, C_{B}(I)$ is the greatest ideal such that $\left[I, C_{B}(I)\right]_{B}=0$.

