Advances on Quillen's conjecture

Kevin I. Piterman (joint w. Stephen D. Smith)

Philipps-Universität Marburg

Groups, rings and the Yang-Baxter equation 2023

June 20, 2023

Let X be a (finite) poset. The reduced homology of X with coefficients in R is:

$$\mathcal{C}_m(X,R) = ext{free} \; R ext{-module} \; ext{on} \; ext{chains} \; x_0 < \ldots < x_m, \; m \geq -1,$$

$$d_m(x_0 < \ldots < x_m) = \sum_i (-1)^i (x_0 < \ldots < \hat{x}_i < \ldots < x_m),$$

 $ilde{H}_m(X, R) = \operatorname{Ker}(d_m) / \operatorname{Im}(d_{m+1}).$

• X is R-acyclic if
$$ilde{H}_*(X,R)=$$
0.

- $\mathcal{K}(X)$ = order-complex of X, then $\tilde{H}_*(X, R) = \tilde{H}_*(\mathcal{K}(X), R)$.
- Topology of X = topology of $\mathcal{K}(X)$.
- Homotopy type of X = homotopy type of $\mathcal{K}(X)$.

Let G be a finite group and p a prime number.

The Quillen poset is:

 $\mathcal{A}_p(G) = \{A \leq G : A \text{ is a non-trivial elementary abelian } p \text{-group}\},\$

- A is an elementary abelian p-group if $A \cong C_p \times \ldots \times C_p \cong \mathbb{Z}/p\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/p\mathbb{Z}.$
- $\mathcal{A}_p(G)$ is a finite poset with the order induced by the inclusion.
- G acts on $\mathcal{A}_p(G)$ by conjugation.

General goal. Establish connections between properties of *G* and combinatorial/topological properties of $\mathcal{A}_{p}(G)$.

Why do we study *p*-group complexes?

- (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely,
 Krull dimension of H^{*}(G, k) = p-rank of G = 1 + dim A_p(G).
- (K. Brown, '94) $H^*_G(\mathcal{A}_p(G), p) \cong H^*(G, p).$
- (Quillen, '78) A_p(G) is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
- Quillen, '78) $O_p(G) = \text{largest normal } p\text{-subgroup of } G$. If $O_p(G) ≠ 1$ then $\mathcal{A}_p(G)$ is contractible.

Quillen's conjecture

If $O_{\rho}(G) = 1$ then $\mathcal{A}_{\rho}(G)$ is not contractible.

(Strong) Quillen's conjecture

If
$$O_p(G) = 1$$
 then $\widetilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

(**H-QC**) If
$$O_p(G) = 1$$
 then $\widetilde{H}_*(\mathcal{A}_p(G), \mathbb{Q}) \neq 0$.

Quillen proved the following cases of (H-QC):

- G is a group of Lie type in characteristic p;
- 2 p-rank of $G = m_p(G) \le 2$;
- **3** G is solvable. Moreover, if $O_p(G) = 1$ then G satisfies $(\mathcal{QD})_p$.
 - H satisfies $(\mathcal{QD})_p$ if $\mathcal{A}_p(H)$ has non-zero homology in top-degree:

$$\widetilde{H}_{m_{\rho}(H)-1}(\mathcal{A}_{\rho}(H),\mathbb{Q})\neq 0.$$

Theorem. If G is *p*-solvable and $O_p(G) = 1$ then G satisfies $(QD)_p$, and hence (H-QC).

Aschbacher-Smith Theorem. (H-QC) holds for G if p > 5 and:

(HU) If $L \cong \mathsf{PSU}_n(q)$, $p \mid q+1, q$ odd, is a component of G, then *p*-extensions of $\mathsf{PSU}_m(q^e)$ satisfy $(\mathcal{QD})_p \ \forall m \le n, e \in \mathbb{Z}$.

• A *p*-extension of *L* is a split-extension of *L* by some $B \in \mathcal{A}_p(\operatorname{Out}(L)) \cup \{1\}$:

$$1 \longrightarrow L \longrightarrow LB \longrightarrow B \longrightarrow 1.$$

Under a minimal counterexample G to (H-QC), if p is odd and G does not contain the following components:

$$L = Sz(2^5)(p = 5), PSL_2(2^3)(p = 3), PSU_3(2^3)(p = 3),$$

then "several reductions" are possible.

- **2** E.g. every component *L* has a *p*-extension failing $(QD)_p$.
- Short list of simple groups such that some p-extension fails (QD)_p for p odd. PSU_n(q), p | q + 1, are in this list!

• Alternative methods allow us to eliminate the problematic components

$$L = Sz(2^5)(p = 5), PSL_2(2^3)(p = 3), PSU_3(2^3)(p = 3).$$

Theorem

Aschbacher-Smith Theorem extends to p = 5.

Extension to p = 3: be careful with components $L = \text{Ree}(3^a)$.

Theorem

Aschbacher-Smith Theorem extends to p = 3 (so to every odd prime).

<u>Idea.</u> Replace strongly **CFSG**-dependent steps with combinatorial arguments.

Kevin Piterman

Advances on Quillen's conjecture

Theorem

If p = 2 and G is a minimal counterexample to (H-QC), then:

•
$$O_{2'}(G) = 1$$

- 2 every component L of G has non-trivial 2-extension $LB \leq G$,
- **③** every component *L* of *G* has a 2-extension in *G* failing $(\mathcal{QD})_2$,
- **(**) *G* has a component *L* of Lie type such that $char(L) \neq 2, 3$ or

 $L \cong \mathsf{PSL}_n(2^a) (n \ge 3), D_n(2^a) (n \ge 4), \text{ or } E_6(2^a).$

On Quillen's conjecture: more recent results for p = 2

By the previous theorem, if G is a minimal counterexample for (H-QC) and p = 2, then every simple component of G has a 2-extension failing $(QD)_2$:

 $LB \leq G$, L a simple component and LB a 2-extension such that

 $\operatorname{not-}(\mathcal{QD})_2 \quad H_{m_2(LB)-1}(\mathcal{A}_2(LB),\mathbb{Q})=0.$

Problem. Classify simple groups L satisfying the following condition:

(E-(QD)) Every 2-extension of L satisfies $(QD)_2$.

Theorem

Let *L* be a simple group of exceptional Lie type in odd characteristic. If *L* fails (E-(QD)), then it is one of the following groups:

 ${}^{3}D_{4}(9), F_{4}(3), F_{4}(9), G_{2}(3), G_{2}(9), {}^{2}G_{2}(3)', E_{8}(3), E_{8}(9).$

- Establish (E-(QD)) for the low-rank groups PSL₂, PSL₃, PSU₃. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
- For L an exceptional group, we look for maximal subgroups H of the 2-extensions LB such that

$$H \leq LB$$
, $m_2(H) = m_2(LB)$, and

 $0 \neq H_{m_2(H)-1}(\mathcal{A}_2(H), \mathbb{Q}) \subseteq H_{m_2(LB)-1}(\mathcal{A}_2(LB), \mathbb{Q}).$

- If H is parabolic, it has a solvable subgroup K with $m_2(H) = m_2(K)$ and $O_2(K) = 1$, so we are done by Quillen's result.
- Otherwise, look for $H = H_1 \times H_2$, where the H_i satisfy $(QD)_2$ and

 $H_{m_2(H)-1}(\mathcal{A}_2(H),\mathbb{Q}) = H_{m_2(H_1)-1}(\mathcal{A}_2(H_1),\mathbb{Q}) \otimes H_{m_2(H_2)-1}(\mathcal{A}_2(H_2),\mathbb{Q}).$

Corollary

Let G be a minimal counterexample to (H-QC) for p = 2. Then G contains a component of Lie type in characteristic $r \neq 3$. Moreover, every such component fails (E-(QD)) and belongs to one of the following families:

$$\mathsf{PSL}_n(2^a)(n \ge 3), D_n(2^a)(n \ge 4), E_6(2^a),$$

 $\mathsf{PSL}_n^{\pm}(q) (n \ge 4), \Omega_{2n+1}(q) (n \ge 2), \mathsf{PSp}_{2n}(q) (n \ge 3), D_n^{\pm}(q) (n \ge 4),$ where $q = r^b$ and r > 3.

What to do next? Study (E-(QD)) for the classical groups. Partial results for $\Omega_{2n+1}(q)$, PSp_{2n}(q) and some of the $D_n^{\pm}(q)$. But I'd try a different argument to eliminate them...

Thanks for your attention!