Advances on Quillen's conjecture

Kevin I. Piterman (joint w. Stephen D. Smith)
Philipps-Universität Marburg

Groups, rings and the Yang-Baxter equation 2023

June 20, 2023

Basic preliminaries

Let X be a (finite) poset. The reduced homology of X with coefficients in R is:

$$
\begin{aligned}
& C_{m}(X, R)=\text { free } R \text {-module on chains } x_{0}<\ldots<x_{m}, m \geq-1, \\
& \qquad d_{m}\left(x_{0}<\ldots<x_{m}\right)=\sum_{i}(-1)^{i}\left(x_{0}<\ldots<\hat{x}_{i}<\ldots<x_{m}\right), \\
& \tilde{H}_{m}(X, R)=\operatorname{Ker}\left(d_{m}\right) / \operatorname{Im}\left(d_{m+1}\right) .
\end{aligned}
$$

- X is R-acyclic if $\tilde{H}_{*}(X, R)=0$.
- $\mathcal{K}(X)=$ order-complex of X, then $\tilde{H}_{*}(X, R)=\tilde{H}_{*}(\mathcal{K}(X), R)$.
- Topology of $X=$ topology of $\mathcal{K}(X)$.
- Homotopy type of $X=$ homotopy type of $\mathcal{K}(X)$.

Setting

Let G be a finite group and p a prime number.
The Quillen poset is:

$$
\mathcal{A}_{p}(G)=\{A \leq G: A \text { is a non-trivial elementary abelian } p \text {-group }\}
$$

- A is an elementary abelian p-group if

$$
A \cong C_{p} \times \ldots \times C_{p} \cong \mathbb{Z} / p \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / p \mathbb{Z}
$$

- $\mathcal{A}_{p}(G)$ is a finite poset with the order induced by the inclusion.
- G acts on $\mathcal{A}_{p}(G)$ by conjugation.

General goal. Establish connections between properties of G and combinatorial/topological properties of $\mathcal{A}_{p}(G)$.

Why do we study p-group complexes?

(1) (D. Quillen, '71) The Atiyah-Swan conjecture holds. Namely, Krull dimension of $H^{*}(G, k)=p$-rank of $G=1+\operatorname{dim} \mathcal{A}_{p}(G)$.
(2) $\left(\mathrm{K}\right.$. Brown, '94) $H_{G}^{*}\left(\mathcal{A}_{p}(G), p\right) \cong H^{*}(G, p)$.
(3) (Quillen, '78) $\mathcal{A}_{p}(G)$ is disconnected if and only if G has a strongly p-embedded subgroup. These groups are crucial in the CFSG!
(9) (Quillen, '78) $O_{p}(G)=$ largest normal p-subgroup of G. If $O_{p}(G) \neq 1$ then $\mathcal{A}_{p}(G)$ is contractible.

Quillen's conjecture

If $O_{p}(G)=1$ then $\mathcal{A}_{p}(G)$ is not contractible.

(Strong) Quillen's conjecture

If $O_{p}(G)=1$ then $\tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0$.

On Quillen's conjecture

$$
(\mathbf{H}-\mathbf{Q C}) \quad \text { If } O_{p}(G)=1 \text { then } \tilde{H}_{*}\left(\mathcal{A}_{p}(G), \mathbb{Q}\right) \neq 0
$$

Quillen proved the following cases of ($\mathrm{H}-\mathrm{QC}$):
(1) G is a group of Lie type in characteristic p;
(2) p-rank of $G=m_{p}(G) \leq 2$;
(3) G is solvable. Moreover, if $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$.

- H satisfies $(\mathcal{Q D})_{p}$ if $\mathcal{A}_{p}(H)$ has non-zero homology in top-degree:

$$
\tilde{H}_{m_{p}(H)-1}\left(\mathcal{A}_{p}(H), \mathbb{Q}\right) \neq 0
$$

Theorem. If G is p-solvable and $O_{p}(G)=1$ then G satisfies $(\mathcal{Q D})_{p}$, and hence ($\mathrm{H}-\mathrm{QC}$).

The Aschbacher-Smith result

Aschbacher-Smith Theorem. (H-QC) holds for G if $p>5$ and:
(HU) If $L \cong \operatorname{PSU}_{n}(q), p \mid q+1, q$ odd, is a component of G, then p-extensions of $\operatorname{PSU}_{m}\left(q^{e}\right)$ satisfy $(\mathcal{Q D})_{p} \forall m \leq n, e \in \mathbb{Z}$.

- A p-extension of L is a split-extension of L by some $B \in \mathcal{A}_{p}(\operatorname{Out}(L)) \cup\{1\}:$

$$
1 \longrightarrow L \longrightarrow L B \longrightarrow B \longrightarrow 1
$$

The restriction $p>5$ and unitary groups

(1) Under a minimal counterexample G to (H-QC), if p is odd and G does not contain the following components:

$$
L=\operatorname{Sz}\left(2^{5}\right)(p=5), \operatorname{PSL}_{2}\left(2^{3}\right)(p=3), \operatorname{PSU}_{3}\left(2^{3}\right)(p=3)
$$

then "several reductions" are possible.
(2) E.g. every component L has a p-extension failing $(\mathcal{Q D})_{p}$.
(3) Short list of simple groups such that some p-extension fails $(\mathcal{Q D})_{p}$ for p odd. $\mathrm{PSU}_{n}(q), p \mid q+1$, are in this list!

On Quillen's conjecture: new results

- Alternative methods allow us to eliminate the problematic components

$$
L=\operatorname{Sz}\left(2^{5}\right)(p=5), \operatorname{PSL}_{2}\left(2^{3}\right)(p=3), \operatorname{PSU}_{3}\left(2^{3}\right)(p=3)
$$

Theorem

Aschbacher-Smith Theorem extends to $p=5$.

Extension to $p=3$: be careful with components $L=\operatorname{Ree}\left(3^{a}\right)$.

Theorem

Aschbacher-Smith Theorem extends to $p=3$ (so to every odd prime).

Idea. Replace strongly CFSG-dependent steps with combinatorial arguments.

On Quillen's conjecture: results for $p=2$

Theorem

If $p=2$ and G is a minimal counterexample to (H-QC), then:
(1) $O_{2^{\prime}}(G)=1$,
(2) every component L of G has non-trivial 2-extension $L B \leq G$,
(3) every component L of G has a 2-extension in G failing $(\mathcal{Q D})_{2}$,
(9) G has a component L of Lie type such that $\operatorname{char}(L) \neq 2,3$ or

$$
L \cong \operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), \text { or } E_{6}\left(2^{a}\right)
$$

On Quillen's conjecture: more recent results for $p=2$

By the previous theorem, if G is a minimal counterexample for (H-QC) and $p=2$, then every simple component of G has a 2 -extension failing $(\mathcal{Q D})_{2}$:
$L B \leq G, L$ a simple component and $L B$ a 2-extension such that

$$
\operatorname{not}-(\mathcal{Q D})_{2} \quad H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)=0
$$

Problem. Classify simple groups L satisfying the following condition:
(E-($\mathcal{Q D})$) Every 2-extension of L satisfies $(\mathcal{Q D})_{2}$.

Theorem

Let L be a simple group of exceptional Lie type in odd characteristic. If L fails ($\mathrm{E}-(\mathcal{Q D})$), then it is one of the following groups:

$$
{ }^{3} D_{4}(9), F_{4}(3), F_{4}(9), G_{2}(3), G_{2}(9),{ }^{2} G_{2}(3)^{\prime}, E_{8}(3), E_{8}(9)
$$

Idea of the proof

(1) Establish $(\mathrm{E}-(\mathcal{Q D}))$ for the low-rank groups $\mathrm{PSL}_{2}, \mathrm{PSL}_{3}, \mathrm{PSU}_{3}$. Use counting arguments (conjugacy classes of 2-subgroups, involutions, field and graph automorphisms).
(2) For L an exceptional group, we look for maximal subgroups H of the 2-extensions $L B$ such that

$$
\begin{gathered}
H \leq L B, \quad m_{2}(H)=m_{2}(L B), \quad \text { and } \\
0 \neq H_{m_{2}(H)-1}\left(\mathcal{A}_{2}(H), \mathbb{Q}\right) \subseteq H_{m_{2}(L B)-1}\left(\mathcal{A}_{2}(L B), \mathbb{Q}\right)
\end{gathered}
$$

(3) If H is parabolic, it has a solvable subgroup K with $m_{2}(H)=m_{2}(K)$ and $O_{2}(K)=1$, so we are done by Quillen's result.
(4) Otherwise, look for $H=H_{1} \times H_{2}$, where the H_{i} satisfy $(\mathcal{Q D})_{2}$ and

$$
H_{m_{2}(H)-1}\left(\mathcal{A}_{2}(H), \mathbb{Q}\right)=H_{m_{2}\left(H_{1}\right)-1}\left(\mathcal{A}_{2}\left(H_{1}\right), \mathbb{Q}\right) \otimes H_{m_{2}\left(H_{2}\right)-1}\left(\mathcal{A}_{2}\left(H_{2}\right), \mathbb{Q}\right) .
$$

Consequence on Quillen's conjecture for $p=2$

Corollary

Let G be a minimal counterexample to (H-QC) for $p=2$. Then G contains a component of Lie type in characteristic $r \neq 3$.
Moreover, every such component fails ($\mathrm{E}-(\mathcal{Q D})$) and belongs to one of the following families:

$$
\begin{gathered}
\operatorname{PSL}_{n}\left(2^{a}\right)(n \geq 3), D_{n}\left(2^{a}\right)(n \geq 4), E_{6}\left(2^{a}\right) \\
\operatorname{PSL}_{n}^{ \pm}(q)(n \geq 4), \Omega_{2 n+1}(q)(n \geq 2), \mathrm{PSp}_{2 n}(q)(n \geq 3), D_{n}^{ \pm}(q)(n \geq 4)
\end{gathered}
$$

where $q=r^{b}$ and $r>3$.
What to do next? Study ($\mathrm{E}-(\mathcal{Q D})$) for the classical groups. Partial results for $\Omega_{2 n+1}(q), \operatorname{PSp}_{2 n}(q)$ and some of the $D_{n}^{ \pm}(q)$. But I'd try a different argument to eliminate them...

Thanks for your attention!

