A common divisor graph for skew braces

Joint work with Arne Van Antwerpen

Silvia Properzi
June 20, 2023

VRIJE
UNIVERSITEIT
BRUSSEL

A skew brace is a triple $(A,+, \circ)$, where $(A,+)$ and (A, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

$(A,+)$ is the additive group and (A, \circ) is the multiplicative group.
Examples: Let (G, \cdot) be a group.

- The trivial skew brace on G is (G, \cdot, \cdot).
- The almost trivial skew brace on G is $\left(G,{ }^{\circ}, \cdot \cdot\right)$.

NOTATIONS

The λ-action of a skew brace $(A,+, \circ)$ is

$$
\begin{aligned}
\lambda:(A, \circ) & \rightarrow \operatorname{Aut}(A,+) \quad \lambda_{a}(b)=-a+a \circ b . \\
& a \circ(b+c)=a \circ b+\lambda_{a}(c) .
\end{aligned}
$$

For $b \in A$, the λ-orbit of b is

$$
\Lambda(b)=\left\{\lambda_{a}(b): a \in A\right\}
$$

The union of the trivial λ-orbits is an additive subgroup:

$$
\operatorname{Fix}(A)=\left\{b \in A: \lambda_{a}(b)=b \quad \forall a \in A\right\}
$$

Examples:

Trivial skew brace: $\lambda_{g}=\mathrm{id}$.
Almost trivial skew brace: $\lambda_{g}(h)=g^{-1}$. op $(g \cdot h)=g \cdot h \cdot g^{-1}$.

DEFINITION

Definition

For a finite skew brace A, let $\Gamma(A)$ be the graph with vertices the non-trivial λ-orbits of A where two vertices C_{1}, C_{2} are adjacent if $\operatorname{gcd}\left(\left|C_{1}\right|,\left|C_{2}\right|\right) \neq 1$.
[Bertram-Herzog-Mann] If (G, \cdot) is a finite group, $\Gamma(G)$ is the graph with vertices the non-trivial conjugacy classes of G where two vertices C_{1}, C_{2} are adjacent if $\operatorname{gcd}\left(\left|C_{1}\right|,\left|C_{2}\right|\right) \neq 1$.
Connection:
$\Gamma\left(G, \cdot{ }^{\circ p}, \cdot\right)=\Gamma(G)$: on the skew brace $\left(G, \cdot{ }^{\circ}, \cdot\right)$, the λ-action is

$$
\lambda_{g}(h)=g h g^{-1}
$$

Let $(A,+, \circ)$ be a finite skew brace.

- $\Gamma(A)$ has no vertices if and only if $+=0$.
- If $|A|=p^{2}$, then $\Gamma(A)$ is empty or a complete graph with $p-1$ vertices.
[Complete classification by Bachiller.]
- If $|A|=p q$, then $\Gamma(A)$ is completely determined by $|\operatorname{Fix}(A)|$. [Complete classification by Acri-Bonatto.]

$(A,+)$	$(n, m) \circ(s, t)$	$\|F i x(A)\|$	$\Gamma(A)$
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+(-1)^{m} s, m+t\right)$	3	\bullet
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+s, m+t\right)$	1	$\bullet \bullet$

Table: Skew braces of size 6.

PROPERTIES

Proposition

If A is a finite skew brace such that $\Gamma(A)$ is connected, the diameter of $\Gamma(A)$ is

$$
d(\Gamma(A)) \leq 4 .
$$

Proposition

If A is a finite skew brace, the number of connected components of $\Gamma(A)$ is

$$
n(\Gamma(A)) \leq 2 .
$$

TWO DISCONNECTED VERTICES

Theorem

Let A be a finite skew brace. If $\Gamma(A)$ has exactly two disconnected vertices, then $A \cong\left(\mathcal{S}_{3},{ }^{\circ \circ}, \cdot\right)$.

$(A,+)$	$(n, m) \circ(s, t)$	$\|F i x(A)\|$	$\Gamma(A)$
$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	6	
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+(-1)^{m} s, m+t\right)$	3	\bullet
$\mathbb{Z} / 3 \mathbb{Z} \times_{\mathbb{Z}} / 2 \mathbb{Z}$	$\left(n+(-1)^{m} s, m+t\right)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$(n+s, m+t)$	2	$\bullet-\bullet$
$\mathbb{Z} / 3 \mathbb{Z} \rtimes_{-1} \mathbb{Z} / 2 \mathbb{Z}$	$\left((-1)^{t} n+s, m+t\right)$	1	$\bullet \bullet$

Table: Skew braces of size 6 .

ONE VERTEX

Theorem

Let \boldsymbol{A} be a skew brace of size $n=2^{m} d$, for $\operatorname{gcd}(2, d)=1$. If $\Gamma(A)$ has exactly one vertex, then $(A,+) \cong F \rtimes \mathbb{Z} / 2 \mathbb{Z}$ and there exists an abelian group G of odd order such that

$$
F=(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}) \times G \quad \text { or } \quad F=\mathbb{Z} / 2^{m-1} \mathbb{Z} \times G .
$$

The number of isomorphism classes of skew braces A with one-vertex graph $\Gamma(A)$ is

$$
\begin{cases}m \mathrm{Ab}(d) & \text { if } 0 \leq m \leq 3, \\ 2 \mathrm{Ab}(d) & \text { if } m \geq 4,\end{cases}
$$

$\mathrm{Ab}(d)=$ number of abelian groups of order d [OEIS: A001055].

- Can we characterize skew braces with a graph with two connected components?
(Group analog: quasi-Frobenius with abelian kernel and complement [Bertram-Herzog-Mann].)
- Is it true that in the connected case, $d(\Gamma(A)) \leq 3$? (For groups [Chillag-Herzog-Mann].)
- When is $d(\Gamma(A)) \leq 2$?

REFERENCES

E. Acri and M. Bonatto.

Skew braces of size pq.
Comm. Algebra, 48(5):1872-1881, 2020.
D. Bachiller.

Classification of braces of order p^{3}.
J. Pure Appl. Algebra, 219(8):3568-3603, 2015.

嘼 E. A. Bertram, M. Herzog, and A. Mann.
On a graph related to conjugacy classes of groups.
Bull. London Math. Soc., 22(6):569-575, 1990.
D. Chillag, M. Herzog, and A. Mann.

On the diameter of a graph related to conjugacy classes of groups.
Bull. London Math. Soc., 25(3):255-262, 1993.

