A common divisor graph for skew braces

Joint work with Arne Van Antwerpen

Silvia Properzi June 20, 2023

A skew brace is a triple $(A, +, \circ)$, where (A, +) and (A, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c.$$

(A, +) is the additive group and (A, \circ) is the multiplicative group.

Examples: Let (G, \cdot) be a group.

- The trivial skew brace on **G** is (G, \cdot, \cdot) .
- The almost trivial skew brace on **G** is (G, \cdot^{op}, \cdot) .

The λ -action of a skew brace (A, +, \circ) is

$$\lambda : (A, \circ) \rightarrow \operatorname{Aut}(A, +)$$
 $\lambda_a(b) = -a + a \circ b.$
 $a \circ (b + c) = a \circ b + \lambda_a(c).$
For $b \in A$, the λ -orbit of b is

$$\Lambda(b) = \{\lambda_a(b) \colon a \in A\}.$$

The union of the trivial λ -orbits is an additive subgroup:

$$\mathsf{Fix}(\mathsf{A}) = \{ \mathsf{b} \in \mathsf{A} \colon \lambda_{\mathsf{a}}(\mathsf{b}) = \mathsf{b} \quad \forall \mathsf{a} \in \mathsf{A} \}.$$

Examples:

Trivial skew brace: $\lambda_g = id$. Almost trivial skew brace: $\lambda_g(h) = g^{-1} \cdot {}^{op} (g \cdot h) = g \cdot h \cdot g^{-1}$.

Definition

For a finite skew brace A, let $\Gamma(A)$ be the graph with vertices the non-trivial λ -orbits of A where two vertices C_1, C_2 are adjacent if $gcd(|C_1|, |C_2|) \neq 1$.

[Bertram-Herzog-Mann] If (G, \cdot) is a finite group, $\Gamma(G)$ is the graph with vertices the non-trivial conjugacy classes of G where two vertices C_1, C_2 are adjacent if $gcd(|C_1|, |C_2|) \neq 1$.

Connection:

 $\Gamma(G, \cdot^{op}, \cdot) = \Gamma(G)$: on the skew brace (G, \cdot^{op}, \cdot) , the λ -action is

 $\lambda_g(h) = ghg^{-1}.$

Let $(A, +, \circ)$ be a finite skew brace.

- Γ(A) has no vertices if and only if + = ο.
- If |A| = p², then Γ(A) is empty or a complete graph with p 1 vertices.
 [Complete classification by Bachiller.]
- If |A| = pq, then Γ(A) is completely determined by |Fix(A)|.
 [Complete classification by Acri–Bonatto.]

(A,+)	$(n,m)\circ(s,t)$	Fix(A)	Г(А)
$\mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	6	
$\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s,m+t)$	6	
$\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + (-1)^m s, m + t)$	3	•
$\mathbb{Z}/3\mathbb{Z} imes\mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s,m+t)$	2	●-●
$\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	2	●-●
$\mathbb{Z}/3\mathbb{Z} times_{-1}\mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + s, m + t)$	1	• •

Table: Skew braces of size 6.

Proposition

If A is a finite skew brace such that $\Gamma(A)$ is connected, the diameter of $\Gamma(A)$ is

 $d(\Gamma(A)) \leq 4.$

Proposition

If A is a finite skew brace, the number of connected components of $\Gamma(A)$ is

 $n(\Gamma(A)) \leq 2.$

Theorem

Let **A** be a finite skew brace. If $\Gamma(A)$ has exactly two disconnected vertices, then $A \cong (S_3, \cdot^{op}, \cdot)$.

(A,+)	$(n,m)\circ(s,t)$	Fix(A)	Г(А)
$\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	6	
$\mathbb{Z}/3\mathbb{Z}\rtimes_{-1}\mathbb{Z}/2\mathbb{Z}$	$(n+(-1)^m s,m+t)$	6	
$\mathbb{Z}/3\mathbb{Z}\rtimes_{-1}\mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + (-1)^m s, m + t)$	3	•
$\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$	$(n + (-1)^m s, m + t)$	2	●-●
$\mathbb{Z}/3\mathbb{Z}\rtimes_{-1}\mathbb{Z}/2\mathbb{Z}$	(n+s,m+t)	2	●─●
$\mathbb{Z}/3\mathbb{Z}\rtimes_{-1}\mathbb{Z}/2\mathbb{Z}$	$((-1)^t n + s, m + t)$	1	• •

Table: Skew braces of size 6.

Theorem

Let A be a skew brace of size $n = 2^m d$, for gcd(2, d) = 1. If $\Gamma(A)$ has exactly one vertex, then $(A, +) \cong F \rtimes \mathbb{Z}/2\mathbb{Z}$ and there exists an abelian group G of odd order such that

$$F = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times G$$
 or $F = \mathbb{Z}/2^{m-1}\mathbb{Z} \times G$.

The number of isomorphism classes of skew braces A with one-vertex graph $\Gamma(A)$ is

$$egin{cases} m \operatorname{Ab}(d) & ext{if } 0 \leq m \leq 3, \ 2 \operatorname{Ab}(d) & ext{if } m \geq 4, \end{cases}$$

Ab(d) = number of abelian groups of order d [OEIS: A001055].

- Can we characterize skew braces with a graph with two connected components?
 (Group analog: quasi-Frobenius with abelian kernel and complement [Bertram-Herzog-Mann].)
- Is it true that in the connected case, d(Γ(A)) ≤ 3? (For groups [Chillag–Herzog–Mann].)
- When is *d*(Γ(*A*)) ≤ 2?

REFERENCES

- E. Acri and M. Bonatto. Skew braces of size pq. Comm. Algebra, 48(5):1872–1881, 2020.
- D. Bachiller.

Classification of braces of order *p*³. J. Pure Appl. Algebra, 219(8):3568–3603, 2015.

E. A. Bertram, M. Herzog, and A. Mann.

On a graph related to conjugacy classes of groups. *Bull. London Math. Soc.*, 22(6):569–575, 1990.

D. Chillag, M. Herzog, and A. Mann.
 On the diameter of a graph related to conjugacy classes of groups.

Bull. London Math. Soc., 25(3):255–262, 1993.