On solutions of the set-theoretic Yang-Baxter equation subjected to a choice of elements

Bernard Rybołowicz
Joint work with Anastasia Doikou

Heriot-Watt University
Blankenberge 2023

Set-theoretic Yang-Baxter equation

Definition

Let X be a set. We say that $r: X \times X \rightarrow X \times X$ is a solution of the set-theoretic Yang-Baxter equation (solution) if

$$
(r \times i d)(i d \times r)(r \times i d)=(i d \times r)(r \times i d)(i d \times r), \quad(a, b) \mapsto\left(\sigma_{a}(b), \tau_{b}(a)\right)
$$

Set-theoretic Yang-Baxter equation

Definition

Let X be a set. We say that $r: X \times X \rightarrow X \times X$ is a solution of the set-theoretic Yang-Baxter equation (solution) if

$$
(r \times i d)(i d \times r)(r \times i d)=(i d \times r)(r \times i d)(i d \times r), \quad(a, b) \mapsto\left(\sigma_{a}(b), \tau_{b}(a)\right)
$$

- We say that r is involutive if $r^{2}=i d$.

Set-theoretic Yang-Baxter equation

Definition

Let X be a set. We say that $r: X \times X \rightarrow X \times X$ is a solution of the set-theoretic Yang-Baxter equation (solution) if

$$
(r \times i d)(i d \times r)(r \times i d)=(i d \times r)(r \times i d)(i d \times r), \quad(a, b) \mapsto\left(\sigma_{a}(b), \tau_{b}(a)\right)
$$

- We say that r is involutive if $r^{2}=i d$.
- We say that r is non-degenerate if σ_{a} and τ_{a} are bijections for all $a \in X$.

Skew braces

Definition

A skew brace is a triple $(B,+, \circ)$ such that $(B,+)$ and (B, \circ) are groups, and for all $a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

Skew braces

Definition

A skew brace is a triple $(B,+, \circ)$ such that $(B,+)$ and (B, \circ) are groups, and for all $a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

- If additionally, $(B,+)$ is abelian, we say that $(B,+, \circ)$ is a brace

Skew braces

Definition

A skew brace is a triple $(B,+, \circ)$ such that $(B,+)$ and (B, \circ) are groups, and for all $a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

- If additionally, $(B,+)$ is abelian, we say that $(B,+, \circ)$ is a brace
- If additionally, for all $a, b, c \in B(b+c) \circ a=b \circ a-a+c \circ a$, we say that $(B,+, \circ)$ is two-sided.

Skew braces

Definition

A skew brace is a triple $(B,+, \circ)$ such that $(B,+)$ and (B, \circ) are groups, and for all $a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

- If additionally, $(B,+)$ is abelian, we say that $(B,+, \circ)$ is a brace
- If additionally, for all $a, b, c \in B(b+c) \circ a=b \circ a-a+c \circ a$, we say that $(B,+, \circ)$ is two-sided.

Remark
If $(B,+, \circ)$ is a two-sided brace, then $(B,+, *)$ is a radical ring, where $a * b:=a \circ b-a-b$.

Rump theorem

Theorem (Wolfgang Rump)
Let $(B,+, \circ)$ be a brace. Then the following map:

$$
r(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-1} \circ a \circ b\right)
$$

is a non-degenerate involutive solution. Moreover, for any involutive solution r on X, there exists a brace G and an injective emebedding $\iota: X \rightarrow G$ such that $\left.r_{G}\right|_{\iota(X) \times \iota(X)} \cong r$.

Rump theorem

Theorem (Wolfgang Rump)

Let $(B,+, \circ)$ be a brace. Then the following map:

$$
r(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-1} \circ a \circ b\right)
$$

is a non-degenerate involutive solution. Moreover, for any involutive solution r on X, there exists a brace G and an injective emebedding $\iota: X \rightarrow G$ such that $\left.r_{G}\right|_{\iota(X) \times \iota(X)} \cong r$.

- This result was further generalise by L. Guarnieri and L. Vendramin to the case of skew braces and non-degenerate solutions.

Definition

Let B be a skew brace. A right distributor of B is a subset

$$
\mathcal{D}_{r}(B):=\{z \in B \mid \forall a, b \in B(a+b) \circ z=a \circ z-z+b \circ z\}
$$

Definition

Let B be a skew brace. A right distributor of B is a subset

$$
\mathcal{D}_{r}(B):=\{z \in B \mid \forall a, b \in B(a+b) \circ z=a \circ z-z+b \circ z\}
$$

Theorem
Let B be a skew brace, then for any $z \in \mathcal{D}_{r}(B)$, the following maps
$r_{z}(a, b):=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-1} \circ a \circ b\right)$
$\breve{r}_{z}(a, b):=\left(\breve{\sigma}_{a}^{z}(b), \breve{\tau}_{b}^{z}(a)\right)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-1} \circ a \circ b\right)$
are non-degenerate solutions. Moreover, $\check{r}_{z^{-1}}=r_{z}^{-1}$.

Affinity and parameter

Remark
Let B be a brace and $z \in \mathcal{D}_{r}(B)$, then for any ideal I of B,

$$
\left.r_{z}\right|_{(I+z) \times(I+z)}
$$

is a non-degenerate solution.
Those solutions correspond to particular congruence classes.

Examples

Example (1)

Let us consider a triple ($\mathrm{Odd}:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\},{ }_{1}, \circ$) where $(a, b) \stackrel{+1}{\longmapsto} a-1+b$ and $(a, b) \stackrel{\circ}{\longmapsto} a \cdot b$. The triple (Odd, $+_{1}, \circ$) is a brace and the solution r_{z} is involutive if and only if for all $a \in B$

$$
(z-1) \cdot(1-a)=0
$$

Therefore, for all $z \neq 1, \check{r}_{z}$ is non-involutive. Moreover, $r_{z}=r_{w}$ if and only if if $z=w$.

Examples

Example (2)

Let us consider a ring $\mathbb{Z} / 8 \mathbb{Z}$. A triple
$\left(\mathrm{OM}:=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, d \in\{1,3,5,7\}, b, c \in\{0,2,4,6\}\right\},+\mathbb{I}, 0\right)$
is a brace, where $(A, B) \stackrel{+\mathbb{I}}{\longmapsto} A-\mathbb{I}+B,(A, B) \stackrel{\circ}{\longmapsto} A \cdot B$. Moreover one can easily check that two solutions \check{r}_{A} and \check{r}_{B} are equal if and only if $(D-\mathbb{I}) \cdot(B-A)=0(\bmod 8) \forall D \in \mathrm{OM}$.

The Lemma

Lemma
Let B be a skew brace and $z \in \mathcal{D}_{r}(B)$. Then the map

$$
\tau^{z}:(B, \circ) \rightarrow \operatorname{Aut}(B), \quad a \mapsto \tau_{a}^{z}
$$

is a group action if and only if for all $a \in B a \circ z=z+a$.

The Lemma

Lemma
Let B be a skew brace and $z \in \mathcal{D}_{r}(B)$. Then the map

$$
\tau^{z}:(B, \circ) \rightarrow \operatorname{Aut}(B), \quad a \mapsto \tau_{a}^{z}
$$

is a group action if and only if for all $a \in B a \circ z=z+a$.
Theorem
Let B be a brace, then if there exists $a \in B$ such that $a \circ z \neq z+a$ and $z \in \mathcal{D}_{r}(B)$, then r_{z} is not isomorphic with any solution (with parameter 1) coming from skew braces.

Other way

Let us start with:

Other way

Let us start with:

- group (G, \circ),

Other way

Let us start with:

- group (G, \circ),
- some fixed parameter $z \in G$,

Other way

Let us start with:

- group (G, \circ),
- some fixed parameter $z \in G$,
- a solution $r_{z}: G \times G \rightarrow G \times G, r_{z}(a, b)=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right)$,

Other way

Let us start with:

- group (G, \circ),
- some fixed parameter $z \in G$,
- a solution $r_{z}: G \times G \rightarrow G \times G, r_{z}(a, b)=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right)$,
- $a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.

Other way

Let us start with:

- group (G, \circ),
- some fixed parameter $z \in G$,
- a solution $r_{z}: G \times G \rightarrow G \times G, r_{z}(a, b)=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right)$,
- $a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.

Then we can define a binary operation

$$
y+x:=x \circ \sigma_{x^{-1}}^{z}(y \circ z) \circ z^{-1}
$$

Other way

Let us start with:

- group (G, \circ),
- some fixed parameter $z \in G$,
- a solution $r_{z}: G \times G \rightarrow G \times G, r_{z}(a, b)=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right)$,
- $a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.

Then we can define a binary operation

$$
y+x:=x \circ \sigma_{x^{-1}}^{z}(y \circ z) \circ z^{-1}
$$

Remark

The operation + is associative if and only if for all $x, y, c \in X$,

$$
\left.\sigma_{c^{-1}}^{z}\left(y \circ z^{-1} \circ \sigma_{z \circ y^{-1}}^{z}(x)\right)=\sigma_{c^{-1}}^{z}(y) \circ z^{-1} \circ \sigma_{\left(c \circ \sigma_{c^{-1}}^{z}\right.}^{z}(y) \circ z^{-1}\right)^{-1}(x)
$$

Other way

Let us start with:

- group (G, \circ),
- some fixed parameter $z \in G$,
- a solution $r_{z}: G \times G \rightarrow G \times G, r_{z}(a, b)=\left(\sigma_{a}^{z}(b), \tau_{b}^{z}(a)\right)$,
- $a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.

Then we can define a binary operation

$$
y+x:=x \circ \sigma_{x^{-1}}^{z}(y \circ z) \circ z^{-1}
$$

Remark

The operation + is associative if and only if for all $x, y, c \in X$,

$$
\sigma_{c^{-1}}^{z}\left(y \circ z^{-1} \circ \sigma_{z \circ y^{-1}}^{z}(x)\right)=\sigma_{c^{-1}}^{z}(y) \circ z^{-1} \circ \sigma_{\left(c \circ \sigma_{c^{-1}}^{z}(y) \circ z^{-1}\right)^{-1}(x)}^{z}
$$

In general it is not associative, but if it is, then $(G,+)$ is a group.

From solution to near brace

Theorem
(A) The pair $(X,+)$ is a group.
(B) There exists $\phi: X \rightarrow X$ such that for all $a, b, c \in X$ $a \circ(b+c)=a \circ b+\phi(a)+a \circ c$.
(C) For $z \in X$ appearing in $\sigma_{x}^{z}(y)$ there exist $\widehat{\phi}: X \rightarrow X$ such that for all $a, b \in X(a+b) \circ z=a \circ z+\widehat{\phi}(z)+b \circ z$.
(D) The neutral element 0 of $(X,+)$ has a left and right distributivity.

From solution to near brace

Theorem

(A) The pair $(X,+)$ is a group.
(B) There exists $\phi: X \rightarrow X$ such that for all $a, b, c \in X$ $a \circ(b+c)=a \circ b+\phi(a)+a \circ c$.
(C) For $z \in X$ appearing in $\sigma_{x}^{z}(y)$ there exist $\widehat{\phi}: X \rightarrow X$ such that for all $a, b \in X(a+b) \circ z=a \circ z+\widehat{\phi}(z)+b \circ z$.
(D) The neutral element 0 of $(X,+)$ has a left and right distributivity.

Then for all $a, b, c \in X$ the following statements hold:

1. $\phi(a)=-a \circ 0$ and $\widehat{\phi}(z)=-0 \circ z$,
2. $\sigma_{a}^{z}(b)=\left(a \circ b \circ z^{-1}-a \circ 0+1\right) \circ z=a \circ b-a \circ 0 \circ z+z$.
3. $a-a \circ 0=1$ and (i) $0 \circ 0=-1$ (ii) $1+1=0^{-1}$.

Near braces

Definition

A near brace is a set B together with two group operations $+, \circ: B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a \circ 0+a \circ c,
$$

and $a-a \circ 0=-a \circ 0+a=1$. We denote by 0 the neutral element of the $(B,+)$ group and by 1 the neutral element of the (B, o) group. We say that a near brace B is an abelian near brace if + is abelian.

Near braces

Definition

A near brace is a set B together with two group operations $+, \circ: B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a \circ 0+a \circ c
$$

and $a-a \circ 0=-a \circ 0+a=1$. We denote by 0 the neutral element of the $(B,+)$ group and by 1 the neutral element of the (B, o) group. We say that a near brace B is an abelian near brace if + is abelian.

Example

Let (B, \circ) be a group with neutral element 1 and define $a+b:=a \circ \kappa^{-1} \circ b$, where $1 \neq \kappa \in B$ is an element of the center of (B, \circ). Then $(B, \circ,+)$ is a near brace with neutral element $0=\kappa$, and we call it the trivial near brace. Thanks Paola!

Solutions with more parameters

Theorem
Let $(B, \circ,+)$ be a near brace and $z \in B$ such that
$\exists c_{1,2} \in B, \forall a, b, c \in B,(a-b+c) \circ z_{i}=a \circ z_{i}-b \circ z_{i}+c \circ z_{i}$, $i \in\{1,2\}, a \circ z_{2} \circ z_{1}-a \circ \xi=c_{1}$ and $-a \circ \xi+a \circ z_{1} \circ z_{2}=c_{2}$. We define a map $\check{r}: B \times B \rightarrow B \times B$ given by

$$
\check{r}(a, b)=\left(\sigma_{a}^{p}(b), \tau_{b}^{p}(a)\right)
$$

where $\sigma_{a}^{p}(b)=a \circ b \circ z_{1}-a \circ \xi+z_{2}, \tau_{b}^{p}(a)=\sigma_{a}^{p}(b)^{-1} \circ a \circ b$. The pair (B, \check{r}) is a solution.

Solutions with more parameters

Theorem
Let $(B, \circ,+)$ be a near brace and $z \in B$ such that
$\exists c_{1,2} \in B, \forall a, b, c \in B,(a-b+c) \circ z_{i}=a \circ z_{i}-b \circ z_{i}+c \circ z_{i}$, $i \in\{1,2\}, a \circ z_{2} \circ z_{1}-a \circ \xi=c_{1}$ and $-a \circ \xi+a \circ z_{1} \circ z_{2}=c_{2}$. We define a map $\check{r}: B \times B \rightarrow B \times B$ given by

$$
\check{r}(a, b)=\left(\sigma_{a}^{p}(b), \tau_{b}^{p}(a)\right)
$$

where $\sigma_{a}^{p}(b)=a \circ b \circ z_{1}-a \circ \xi+z_{2}, \tau_{b}^{p}(a)=\sigma_{a}^{p}(b)^{-1} \circ a \circ b$. The pair (B, \check{r}) is a solution.

Example

- $z_{1}=1, z_{2}=\xi$
- $z_{1} \circ z_{2}=\xi, \quad z_{i} \in Z(B, \circ)$

How restrictive are those parameters?

Theorem again

Lemma

Let B be a skew brace and $z \in \mathcal{D}_{r}(B)$. Then the map

$$
\tau^{z}:(B, \circ) \rightarrow \operatorname{Aut}(B), \quad a \mapsto \tau_{a}^{z}
$$

is a group action if and only if for all $a \in B a \circ z=z+a$.
Theorem
Let B be a brace, then if there exists $a \in B$ such that $a \circ z \neq z+a$ and $z \in \mathcal{D}_{r}(B)$, then r_{z} is not isomorphic with any solution (with parameter 1) coming from skew braces.

Proof of the theorem

Let us assume that r_{1} is isomorphic to r_{z}, for some skew brace S. Then there exists a bijection $f: S \rightarrow B$ such that,

$$
\begin{aligned}
(f \times f) r_{1} & =r_{z}(f \times f) \\
f(a \circ b-a) & =f(a) \circ f(b)-f(a) \circ z+z \\
f\left(\left(\sigma_{a}(b)\right)^{-1} \circ a \circ b\right) & =\sigma_{f(a)}^{z}(f(b))^{-1} \circ f(a) \circ f(b)
\end{aligned}
$$

Observe that for $b=1$, we get that
$f(1)=f(a) \circ f(1)-f(a) \circ z+z \Longrightarrow-f(a) \circ f(1)+f(1)=-f(a) \circ z+z$
Thus $\sigma^{z}=\sigma^{f(1)}$ and $\check{r}_{f(1)}=\check{r}_{z}$. Moreover, $f(1)$ is the center of the group (B, \circ) as

$$
\begin{aligned}
f(a) & =f\left(\tau_{1}(a)\right)=\tau_{f(1)}^{z}(f(a))=\sigma_{f(a)}^{z}(f(1))^{-1} \circ f(a) \circ f(1) \\
& =f\left(\sigma_{a}(1)\right)^{-1} \circ f(a) \circ f(1)=f(1)^{-1} \circ f(a) \circ f(1),
\end{aligned}
$$

and since f is surjective $f(1)$ is in the center of (B, \circ).

Proof

Further, for all $a \in S$

$$
f(a)=f\left(\sigma_{1}(a)\right)=\sigma_{f(1)}^{f(1)}(f(a))=f(1) \circ f(a)-f(1)^{2}+f(1),
$$

and $-f(1) \circ f(a)+f(a)=-f(1)^{2}+f(1)$, which for $f(a)=1$ gives $f(1)^{2}=f(1)+f(1)$. By simple substitution we get
$-f(1) \circ f(a)+f(a)=-f(1)$, and thus
$f(a)+f(1)=f(1) \circ f(a)=f(a) \circ f(1)$. Finally, since
$f(1)+f(a)=f(a)+f(1)=f(a) \circ f(1)$, we get that $\tau^{f(1)}=\tau^{z}$ is a group action. This contradicts with the assumption that τ^{z} was not a group action.

Proof

Further, for all $a \in S$

$$
f(a)=f\left(\sigma_{1}(a)\right)=\sigma_{f(1)}^{f(1)}(f(a))=f(1) \circ f(a)-f(1)^{2}+f(1),
$$

and $-f(1) \circ f(a)+f(a)=-f(1)^{2}+f(1)$, which for $f(a)=1$ gives $f(1)^{2}=f(1)+f(1)$. By simple substitution we get
$-f(1) \circ f(a)+f(a)=-f(1)$, and thus
$f(a)+f(1)=f(1) \circ f(a)=f(a) \circ f(1)$. Finally, since
$f(1)+f(a)=f(a)+f(1)=f(a) \circ f(1)$, we get that $\tau^{f(1)}=\tau^{z}$ is
a group action. This contradicts with the assumption that τ^{z} was not a group action.

Example

Let us consider a two-sided brace $U(\mathbb{Z} / 16 \mathbb{Z})$. Observe that in this case \check{r}_{7} is not equivalent to \check{r}_{1} as $5-1+7=11(\bmod 16)$ and $5 \circ 7=3(\bmod 16)$. One can easily compute that

$$
\tau_{15}^{7}(5)=5 \quad(\bmod 16) \quad \& \quad \tau_{3}^{7} \tau_{5}^{7}(5)=13 \quad(\bmod 16)
$$

Thank you

