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Set-theoretic Yang-Baxter equation

Definition
Let X be a set. We say that r : X × X → X × X is a solution of
the set-theoretic Yang-Baxter equation (solution) if

(r×id)(id×r)(r×id) = (id×r)(r×id)(id×r), (a, b) 7→ (σa(b), τb(a)).

▶ We say that r is involutive if r2 = id .

▶ We say that r is non-degenerate if σa and τa are bijections for
all a ∈ X .
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Skew braces

Definition
A skew brace is a triple (B,+, ◦) such that (B,+) and (B, ◦) are
groups, and for all a, b, c ∈ B,

a ◦ (b + c) = a ◦ b − a + a ◦ c

▶ If additionally, (B,+) is abelian, we say that (B,+, ◦) is a
brace

▶ If additionally, for all a, b, c ∈ B (b + c) ◦ a = b ◦ a− a + c ◦ a,
we say that (B,+, ◦) is two-sided.

Remark
If (B,+, ◦) is a two-sided brace, then (B,+, ∗) is a radical ring,
where a ∗ b := a ◦ b − a− b.
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Rump theorem

Theorem (Wolfgang Rump)

Let (B,+, ◦) be a brace. Then the following map:

r(a, b) := (−a + a ◦ b, (−a + a ◦ b)−1 ◦ a ◦ b)

is a non-degenerate involutive solution. Moreover, for any
involutive solution r on X , there exists a brace G and an injective
emebedding ι : X → G such that rG |ι(X )×ι(X )

∼= r .

▶ This result was further generalise by L. Guarnieri and L.
Vendramin to the case of skew braces and non-degenerate
solutions.
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Definition
Let B be a skew brace. A right distributor of B is a subset

Dr (B) := {z ∈ B | ∀a, b ∈ B (a + b) ◦ z = a ◦ z − z + b ◦ z}

Theorem
Let B be a skew brace, then for any z ∈ Dr (B), the following maps

rz(a, b) := (σz
a(b), τ zb (a)) = (a◦b−a◦z+z , (a◦b−a◦z+z)−1◦a◦b)

řz(a, b) := (σ̌z
a(b), τ̌ zb (a)) = (−a◦z+a◦b◦z , (−a◦z+a◦b◦z)−1◦a◦b)

are non-degenerate solutions. Moreover, řz−1 = r−1
z .
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Affinity and parameter

Remark
Let B be a brace and z ∈ Dr (B), then for any ideal I of B,

rz |(I+z)×(I+z)

is a non-degenerate solution.

Those solutions correspond to particular congruence classes.



Examples

Example (1)

Let us consider a triple (Odd :=
{
2n+1
2k+1 | n, k ∈ Z

}
,+1, ◦) where

(a, b)
+17−→ a− 1 + b and (a, b)

◦7−→ a · b. The triple (Odd,+1, ◦) is
a brace and the solution rz is involutive if and only if for all a ∈ B

(z − 1) · (1 − a) = 0.

Therefore, for all z ̸= 1, řz is non-involutive. Moreover, rz = rw if
and only if if z = w .



Examples

Example (2)

Let us consider a ring Z/8Z. A triple(
OM :=

{(
a b
c d

)
| a, d ∈ {1, 3, 5, 7}, b, c ∈ {0, 2, 4, 6}

}
,+I, ◦

)
is a brace, where (A,B)

+I7−→ A− I + B, (A,B)
◦7−→ A · B.

Moreover one can easily check that two solutions řA and řB are
equal if and only if (D − I) · (B − A) = 0 (mod 8) ∀D ∈ OM.



The Lemma

Lemma
Let B be a skew brace and z ∈ Dr (B). Then the map

τ z : (B, ◦) → Aut(B), a 7→ τ za

is a group action if and only if for all a ∈ B a ◦ z = z + a.

Theorem
Let B be a brace, then if there exists a ∈ B such that a ◦ z ̸= z + a
and z ∈ Dr (B), then rz is not isomorphic with any solution (with
parameter 1) coming from skew braces.
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Other way
Let us start with:

▶ group (G , ◦),

▶ some fixed parameter z ∈ G ,

▶ a solution rz : G × G → G × G , rz(a, b) = (σz
a(b), τ zb (a)),

▶ a ◦ b = σz
a(b) ◦ τ zb (a).

Then we can define a binary operation

y + x := x ◦ σz
x−1(y ◦ z) ◦ z−1

Remark
The operation + is associative if and only if for all x , y , c ∈ X ,

σz
c−1(y ◦ z−1 ◦ σz

z◦y−1(x)) = σz
c−1(y) ◦ z−1 ◦ σz

(c◦σz
c−1 (y)◦z−1)−1(x).

In general it is not associative, but if it is, then (G ,+) is a group.
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From solution to near brace

Theorem

(A) The pair (X ,+) is a group.

(B) There exists ϕ : X → X such that for all a, b, c ∈ X
a ◦ (b + c) = a ◦ b + ϕ(a) + a ◦ c .

(C) For z ∈ X appearing in σz
x (y) there exist ϕ̂ : X → X such that for

all a, b ∈ X (a + b) ◦ z = a ◦ z + ϕ̂(z) + b ◦ z .

(D) The neutral element 0 of (X ,+) has a left and right distributivity.

Then for all a, b, c ∈ X the following statements hold:

1. ϕ(a) = −a ◦ 0 and ϕ̂(z) = −0 ◦ z ,

2. σz
a(b) = (a ◦ b ◦ z−1 − a ◦ 0 + 1) ◦ z = a ◦ b − a ◦ 0 ◦ z + z .

3. a− a ◦ 0 = 1 and (i) 0 ◦ 0 = −1 (ii) 1 + 1 = 0−1.
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Near braces

Definition
A near brace is a set B together with two group operations
+, ◦ : B × B → B, the first is called addition and the second is
called multiplication, such that ∀a, b, c ∈ B,

a ◦ (b + c) = a ◦ b − a ◦ 0 + a ◦ c ,

and a− a ◦ 0 = −a ◦ 0 + a = 1. We denote by 0 the neutral
element of the (B,+) group and by 1 the neutral element of the
(B, ◦) group. We say that a near brace B is an abelian near brace
if + is abelian.

Example

Let (B, ◦) be a group with neutral element 1 and define
a + b := a ◦ κ−1 ◦ b, where 1 ̸= κ ∈ B is an element of the center
of (B, ◦). Then (B, ◦,+) is a near brace with neutral element
0 = κ, and we call it the trivial near brace. Thanks Paola!
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Solutions with more parameters

Theorem
Let (B, ◦,+) be a near brace and z ∈ B such that
∃ c1,2 ∈ B, ∀a, b, c ∈ B, (a− b + c) ◦ zi = a ◦ zi − b ◦ zi + c ◦ zi ,
i ∈ {1, 2}, a ◦ z2 ◦ z1 − a ◦ ξ = c1 and −a ◦ ξ + a ◦ z1 ◦ z2 = c2. We
define a map ř : B × B → B × B given by

ř(a, b) = (σp
a (b), τpb (a)),

where σp
a (b) = a ◦ b ◦ z1 − a ◦ ξ + z2, τ

p
b (a) = σp

a (b)−1 ◦ a ◦ b. The
pair (B, ř) is a solution.

Example

▶ z1 = 1, z2 = ξ

▶ z1 ◦ z2 = ξ, zi ∈ Z (B, ◦)
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How restrictive are those parameters?



Theorem again

Lemma
Let B be a skew brace and z ∈ Dr (B). Then the map

τ z : (B, ◦) → Aut(B), a 7→ τ za

is a group action if and only if for all a ∈ B a ◦ z = z + a.

Theorem
Let B be a brace, then if there exists a ∈ B such that a ◦ z ̸= z + a
and z ∈ Dr (B), then rz is not isomorphic with any solution (with
parameter 1) coming from skew braces.



Proof of the theorem
Let us assume that r1 is isomorphic to rz , for some skew brace S .
Then there exists a bijection f : S → B such that,

(f × f )r1 = rz(f × f )

f (a ◦ b − a) = f (a) ◦ f (b) − f (a) ◦ z + z

f ((σa(b))−1 ◦ a ◦ b) = σz
f (a)(f (b))−1 ◦ f (a) ◦ f (b)

Observe that for b = 1, we get that

f (1) = f (a)◦f (1)−f (a)◦z+z =⇒ −f (a)◦f (1)+f (1) = −f (a)◦z+z

Thus σz = σf (1) and řf (1) = řz . Moreover, f (1) is the center of
the group (B, ◦) as

f (a) = f (τ1(a)) = τ zf (1)(f (a)) = σz
f (a)(f (1))−1 ◦ f (a) ◦ f (1)

= f (σa(1))−1 ◦ f (a) ◦ f (1) = f (1)−1 ◦ f (a) ◦ f (1),

and since f is surjective f (1) is in the center of (B, ◦).



Proof
Further, for all a ∈ S

f (a) = f (σ1(a)) = σ
f (1)
f (1)(f (a)) = f (1) ◦ f (a) − f (1)2 + f (1),

and −f (1) ◦ f (a) + f (a) = −f (1)2 + f (1), which for f (a) = 1 gives
f (1)2 = f (1) + f (1). By simple substitution we get
−f (1) ◦ f (a) + f (a) = −f (1), and thus
f (a) + f (1) = f (1) ◦ f (a) = f (a) ◦ f (1). Finally, since
f (1) + f (a) = f (a) + f (1) = f (a) ◦ f (1), we get that τ f (1) = τ z is
a group action. This contradicts with the assumption that τ z was
not a group action.

Example

Let us consider a two-sided brace U(Z/16Z). Observe that in this
case ř7 is not equivalent to ř1 as 5 − 1 + 7 = 11 (mod 16) and
5 ◦ 7 = 3 (mod 16). One can easily compute that

τ715(5) = 5 (mod 16) & τ73 τ
7
5 (5) = 13 (mod 16).
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Thank you


