On solutions of the set-theoretic Yang-Baxter equation subjected to a choice of elements

> Bernard Rybołowicz Joint work with Anastasia Doikou

> > Heriot-Watt University

Blankenberge 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Set-theoretic Yang-Baxter equation

Definition

Let X be a set. We say that $r : X \times X \to X \times X$ is a solution of the set-theoretic Yang-Baxter equation (solution) if

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r), \quad (a, b) \mapsto (\sigma_a(b), \tau_b(a)).$

Set-theoretic Yang-Baxter equation

Definition

Let X be a set. We say that $r : X \times X \to X \times X$ is a solution of the set-theoretic Yang-Baxter equation (solution) if

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r), \quad (a, b) \mapsto (\sigma_a(b), \tau_b(a)).$

• We say that r is involutive if $r^2 = id$.

Set-theoretic Yang-Baxter equation

Definition

Let X be a set. We say that $r : X \times X \to X \times X$ is a solution of the set-theoretic Yang-Baxter equation (solution) if

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r), \quad (a, b) \mapsto (\sigma_a(b), \tau_b(a)).$

• We say that r is involutive if $r^2 = id$.

We say that r is non-degenerate if σ_a and τ_a are bijections for all a ∈ X.

(日)(1)<

Definition

A skew brace is a triple $(B, +, \circ)$ such that (B, +) and (B, \circ) are groups, and for all $a, b, c \in B$,

$$a \circ (b+c) = a \circ b - a + a \circ c$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Definition

A skew brace is a triple $(B, +, \circ)$ such that (B, +) and (B, \circ) are groups, and for all $a, b, c \in B$,

$$a \circ (b + c) = a \circ b - a + a \circ c$$

If additionally, (B, +) is abelian, we say that (B, +, ∘) is a brace

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Definition

A skew brace is a triple $(B, +, \circ)$ such that (B, +) and (B, \circ) are groups, and for all $a, b, c \in B$,

$$a \circ (b + c) = a \circ b - a + a \circ c$$

- ► If additionally, (B,+) is abelian, we say that (B,+, ∘) is a brace
- If additionally, for all a, b, c ∈ B (b+c) ∘ a = b ∘ a − a + c ∘ a, we say that (B, +, ∘) is two-sided.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Definition

A skew brace is a triple $(B, +, \circ)$ such that (B, +) and (B, \circ) are groups, and for all $a, b, c \in B$,

$$a \circ (b + c) = a \circ b - a + a \circ c$$

- ► If additionally, (B,+) is abelian, we say that (B,+, ∘) is a brace
- If additionally, for all a, b, c ∈ B (b+c) ∘ a = b ∘ a − a + c ∘ a, we say that (B, +, ∘) is two-sided.

Remark

If $(B, +, \circ)$ is a two-sided brace, then (B, +, *) is a radical ring, where $a * b := a \circ b - a - b$.

Rump theorem

Theorem (Wolfgang Rump)

Let $(B, +, \circ)$ be a brace. Then the following map:

$$r(a,b) := (-a + a \circ b, (-a + a \circ b)^{-1} \circ a \circ b)$$

is a non-degenerate involutive solution. Moreover, for any involutive solution r on X, there exists a brace G and an injective emebedding $\iota: X \to G$ such that $r_G|_{\iota(X) \times \iota(X)} \cong r$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rump theorem

Theorem (Wolfgang Rump)

Let $(B, +, \circ)$ be a brace. Then the following map:

$$r(a,b) := (-a + a \circ b, (-a + a \circ b)^{-1} \circ a \circ b)$$

is a non-degenerate involutive solution. Moreover, for any involutive solution r on X, there exists a brace G and an injective emebedding $\iota: X \to G$ such that $r_G|_{\iota(X) \times \iota(X)} \cong r$.

This result was further generalise by L. Guarnieri and L. Vendramin to the case of skew braces and non-degenerate solutions.

Definition

Let B be a skew brace. A right distributor of B is a subset

$$\mathcal{D}_r(B) := \{ z \in B \mid \forall a, b \in B \ (a+b) \circ z = a \circ z - z + b \circ z \}$$

Definition

Let B be a skew brace. A right distributor of B is a subset

$$\mathcal{D}_r(B) := \{z \in B \mid orall a, b \in B \ (a+b) \circ z = a \circ z - z + b \circ z\}$$

Theorem

Let B be a skew brace, then for any $z \in D_r(B)$, the following maps

$$r_z(a,b) := (\sigma_a^z(b), \tau_b^z(a)) = (a \circ b - a \circ z + z, (a \circ b - a \circ z + z)^{-1} \circ a \circ b)$$

 $\check{r}_{z}(a,b) := (\check{\sigma}_{a}^{z}(b),\check{\tau}_{b}^{z}(a)) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^{-1} \circ a \circ b)$ are non-degenerate solutions. Moreover, $\check{r}_{z^{-1}} = r_{z}^{-1}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Affinity and parameter

Remark

Let B be a brace and $z \in D_r(B)$, then for any ideal I of B,

 $r_z|_{(I+z)\times(I+z)}$

is a non-degenerate solution.

Those solutions correspond to particular congruence classes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples

Example (1)

Let us consider a triple (Odd := $\left\{\frac{2n+1}{2k+1} \mid n, k \in \mathbb{Z}\right\}, +_1, \circ$) where (*a*, *b*) $\stackrel{+_1}{\longmapsto} a - 1 + b$ and (*a*, *b*) $\stackrel{\circ}{\longmapsto} a \cdot b$. The triple (Odd, $+_1, \circ$) is a brace and the solution r_z is involutive if and only if for all $a \in B$

$$(z-1)\cdot(1-a)=0.$$

Therefore, for all $z \neq 1$, \check{r}_z is non-involutive. Moreover, $r_z = r_w$ if and only if if z = w.

Examples

Example (2)

Let us consider a ring $\mathbb{Z}/8\mathbb{Z}$. A triple

$$\left(\mathrm{OM}:=\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\ \mid\ \textit{a}, d\in\{1,3,5,7\},\ b,c\in\{0,2,4,6\}\right\},+_{\mathbb{I}},\circ\right)$$

is a brace, where $(A, B) \xrightarrow{+\mathbb{I}} A - \mathbb{I} + B$, $(A, B) \xrightarrow{\circ} A \cdot B$. Moreover one can easily check that two solutions \check{r}_A and \check{r}_B are equal if and only if $(D - \mathbb{I}) \cdot (B - A) = 0 \pmod{8} \quad \forall D \in OM$.

The Lemma

Lemma

Let B be a skew brace and $z \in D_r(B)$. Then the map

$$\tau^{z}: (B, \circ) \to \operatorname{Aut}(B), \quad a \mapsto \tau^{z}_{a}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is a group action if and only if for all $a \in B$ $a \circ z = z + a$.

The Lemma

Lemma

Let B be a skew brace and $z \in D_r(B)$. Then the map

$$au^z: (B, \circ) o \operatorname{Aut}(B), \quad a \mapsto au^z_a$$

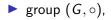
is a group action if and only if for all $a \in B$ $a \circ z = z + a$.

Theorem

Let B be a brace, then if there exists $a \in B$ such that $a \circ z \neq z + a$ and $z \in D_r(B)$, then r_z is not isomorphic with any solution (with parameter 1) coming from skew braces.

Let us start with:

Let us start with:



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let us start with:

- group (G, \circ) ,
- ▶ some fixed parameter $z \in G$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let us start with:

- group (G, \circ) ,
- ▶ some fixed parameter $z \in G$,
- ▶ a solution $r_z : G \times G \rightarrow G \times G$, $r_z(a, b) = (\sigma_a^z(b), \tau_b^z(a))$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let us start with:

- ▶ group (*G*, ∘),
- some fixed parameter $z \in G$,
- ▶ a solution $r_z : G \times G \rightarrow G \times G$, $r_z(a, b) = (\sigma_a^z(b), \tau_b^z(a))$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\blacktriangleright a \circ b = \sigma_a^z(b) \circ \tau_b^z(a).$

Let us start with:

- ▶ group (*G*, ∘),
- some fixed parameter $z \in G$,
- ▶ a solution $r_z : G \times G \rightarrow G \times G$, $r_z(a, b) = (\sigma_a^z(b), \tau_b^z(a))$,

$$\blacktriangleright a \circ b = \sigma_a^z(b) \circ \tau_b^z(a).$$

Then we can define a binary operation

$$y + x := x \circ \sigma_{x^{-1}}^z (y \circ z) \circ z^{-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let us start with:

- ▶ group (*G*, ∘),
- some fixed parameter $z \in G$,
- ▶ a solution $r_z : G \times G \rightarrow G \times G$, $r_z(a, b) = (\sigma_a^z(b), \tau_b^z(a))$,

$$\blacktriangleright a \circ b = \sigma_a^z(b) \circ \tau_b^z(a).$$

Then we can define a binary operation

$$y + x := x \circ \sigma_{x^{-1}}^z (y \circ z) \circ z^{-1}$$

Remark

The operation + is associative if and only if for all $x, y, c \in X$,

$$\sigma_{c^{-1}}^{z}(y \circ z^{-1} \circ \sigma_{z \circ y^{-1}}^{z}(x)) = \sigma_{c^{-1}}^{z}(y) \circ z^{-1} \circ \sigma_{(c \circ \sigma_{c^{-1}}^{z}(y) \circ z^{-1})^{-1}}^{z}(x).$$

Let us start with:

- ▶ group (G, ∘),
- some fixed parameter $z \in G$,
- ▶ a solution $r_z : G \times G \rightarrow G \times G$, $r_z(a, b) = (\sigma_a^z(b), \tau_b^z(a))$,

$$\blacktriangleright a \circ b = \sigma_a^z(b) \circ \tau_b^z(a).$$

Then we can define a binary operation

$$y + x := x \circ \sigma_{x^{-1}}^z (y \circ z) \circ z^{-1}$$

Remark

The operation + is associative if and only if for all $x, y, c \in X$,

$$\sigma_{c^{-1}}^{z}(y \circ z^{-1} \circ \sigma_{z \circ y^{-1}}^{z}(x)) = \sigma_{c^{-1}}^{z}(y) \circ z^{-1} \circ \sigma_{(c \circ \sigma_{c^{-1}}^{z}(y) \circ z^{-1})^{-1}}^{z}(x).$$

In general it is not associative, but if it is, then (G, +) is a group.

From solution to near brace

Theorem

- (A) The pair (X, +) is a group.
- (B) There exists $\phi : X \to X$ such that for all $a, b, c \in X$ $a \circ (b + c) = a \circ b + \phi(a) + a \circ c$.
- (C) For $z \in X$ appearing in $\sigma_x^z(y)$ there exist $\widehat{\phi} : X \to X$ such that for all $a, b \in X$ $(a + b) \circ z = a \circ z + \widehat{\phi}(z) + b \circ z$.
- (D) The neutral element 0 of (X, +) has a left and right distributivity.

A D N A 目 N A E N A E N A B N A C N

From solution to near brace

Theorem

(A) The pair (X, +) is a group.

(B) There exists $\phi : X \to X$ such that for all $a, b, c \in X$ $a \circ (b + c) = a \circ b + \phi(a) + a \circ c$.

(C) For $z \in X$ appearing in $\sigma_x^z(y)$ there exist $\widehat{\phi} : X \to X$ such that for all $a, b \in X$ $(a + b) \circ z = a \circ z + \widehat{\phi}(z) + b \circ z$.

(D) The neutral element 0 of (X, +) has a left and right distributivity. Then for all $a, b, c \in X$ the following statements hold:

1.
$$\phi(a) = -a \circ 0 \text{ and } \widehat{\phi}(z) = -0 \circ z$$
,
2. $\sigma_a^z(b) = (a \circ b \circ z^{-1} - a \circ 0 + 1) \circ z = a \circ b - a \circ 0 \circ z + z$.
3. $a - a \circ 0 = 1 \text{ and } (i) \ 0 \circ 0 = -1 \ (ii) \ 1 + 1 = 0^{-1}$.

A D N A 目 N A E N A E N A B N A C N

Near braces

Definition

A *near brace* is a set *B* together with two group operations $+, \circ : B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$a\circ(b+c)=a\circ b-a\circ 0+a\circ c,$$

and $a - a \circ 0 = -a \circ 0 + a = 1$. We denote by 0 the neutral element of the (B, +) group and by 1 the neutral element of the (B, \circ) group. We say that a near brace *B* is an abelian near brace if + is abelian.

Near braces

Definition

A *near brace* is a set *B* together with two group operations $+, \circ : B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that $\forall a, b, c \in B$,

$$a\circ(b+c)=a\circ b-a\circ 0+a\circ c,$$

and $a - a \circ 0 = -a \circ 0 + a = 1$. We denote by 0 the neutral element of the (B, +) group and by 1 the neutral element of the (B, \circ) group. We say that a near brace *B* is an abelian near brace if + is abelian.

Example

Let (B, \circ) be a group with neutral element 1 and define $a + b := a \circ \kappa^{-1} \circ b$, where $1 \neq \kappa \in B$ is an element of the center of (B, \circ) . Then $(B, \circ, +)$ is a near brace with neutral element $0 = \kappa$, and we call it the trivial near brace. **Thanks Paola!**

Solutions with more parameters

Theorem

Let $(B, \circ, +)$ be a near brace and $z \in B$ such that $\exists c_{1,2} \in B, \forall a, b, c \in B, (a - b + c) \circ z_i = a \circ z_i - b \circ z_i + c \circ z_i,$ $i \in \{1, 2\}, a \circ z_2 \circ z_1 - a \circ \xi = c_1 \text{ and } -a \circ \xi + a \circ z_1 \circ z_2 = c_2.$ We define a map $\check{r} : B \times B \to B \times B$ given by

$$\check{r}(a,b) = (\sigma_a^p(b), \tau_b^p(a)),$$

where $\sigma_a^p(b) = a \circ b \circ z_1 - a \circ \xi + z_2$, $\tau_b^p(a) = \sigma_a^p(b)^{-1} \circ a \circ b$. The pair (B, \check{r}) is a solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Solutions with more parameters

Theorem

Let $(B, \circ, +)$ be a near brace and $z \in B$ such that $\exists c_{1,2} \in B, \forall a, b, c \in B, (a - b + c) \circ z_i = a \circ z_i - b \circ z_i + c \circ z_i,$ $i \in \{1, 2\}, a \circ z_2 \circ z_1 - a \circ \xi = c_1 \text{ and } -a \circ \xi + a \circ z_1 \circ z_2 = c_2.$ We define a map $\check{r} : B \times B \to B \times B$ given by

$$\check{r}(a,b) = (\sigma_a^p(b), \tau_b^p(a)),$$

where $\sigma_a^p(b) = a \circ b \circ z_1 - a \circ \xi + z_2$, $\tau_b^p(a) = \sigma_a^p(b)^{-1} \circ a \circ b$. The pair (B, \check{r}) is a solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

►
$$z_1 = 1, z_2 = \xi$$

► $z_1 \circ z_2 = \xi, \quad z_i \in Z(B, \circ)$

How restrictive are those parameters?

Theorem again

Lemma

Let B be a skew brace and $z \in D_r(B)$. Then the map

$$\tau^{z}: (B, \circ) \to \operatorname{Aut}(B), \quad a \mapsto \tau^{z}_{a}$$

is a group action if and only if for all $a \in B$ $a \circ z = z + a$.

Theorem

Let B be a brace, then if there exists $a \in B$ such that $a \circ z \neq z + a$ and $z \in D_r(B)$, then r_z is not isomorphic with any solution (with parameter 1) coming from skew braces.

Proof of the theorem

Let us assume that r_1 is isomorphic to r_z , for some skew brace S. Then there exists a bijection $f: S \to B$ such that,

$$(f \times f)r_1 = r_z(f \times f)$$

$$f(a \circ b - a) = f(a) \circ f(b) - f(a) \circ z + z$$

$$f((\sigma_a(b))^{-1} \circ a \circ b) = \sigma_{f(a)}^z(f(b))^{-1} \circ f(a) \circ f(b)$$

Observe that for b = 1, we get that

$$f(1) = f(a) \circ f(1) - f(a) \circ z + z \implies -f(a) \circ f(1) + f(1) = -f(a) \circ z + z$$

Thus $\sigma^z = \sigma^{f(1)}$ and $\check{r}_{f(1)} = \check{r}_z$. Moreover, f(1) is the center of the group (B, \circ) as

$$\begin{split} f(a) &= f(\tau_1(a)) = \tau_{f(1)}^z(f(a)) = \sigma_{f(a)}^z(f(1))^{-1} \circ f(a) \circ f(1) \\ &= f(\sigma_a(1))^{-1} \circ f(a) \circ f(1) = f(1)^{-1} \circ f(a) \circ f(1), \end{split}$$

and since f is surjective f(1) is in the center of (B, \circ) .

Proof

Further, for all $a \in S$

$$f(a) = f(\sigma_1(a)) = \sigma_{f(1)}^{f(1)}(f(a)) = f(1) \circ f(a) - f(1)^2 + f(1),$$

and $-f(1) \circ f(a) + f(a) = -f(1)^2 + f(1)$, which for f(a) = 1 gives $f(1)^2 = f(1) + f(1)$. By simple substitution we get $-f(1) \circ f(a) + f(a) = -f(1)$, and thus $f(a) + f(1) = f(1) \circ f(a) = f(a) \circ f(1)$. Finally, since $f(1) + f(a) = f(a) + f(1) = f(a) \circ f(1)$, we get that $\tau^{f(1)} = \tau^z$ is a group action. This contradicts with the assumption that τ^z was not a group action.

Proof

Further, for all $a \in S$

$$f(a) = f(\sigma_1(a)) = \sigma_{f(1)}^{f(1)}(f(a)) = f(1) \circ f(a) - f(1)^2 + f(1),$$

and $-f(1) \circ f(a) + f(a) = -f(1)^2 + f(1)$, which for f(a) = 1 gives $f(1)^2 = f(1) + f(1)$. By simple substitution we get $-f(1) \circ f(a) + f(a) = -f(1)$, and thus $f(a) + f(1) = f(1) \circ f(a) = f(a) \circ f(1)$. Finally, since $f(1) + f(a) = f(a) + f(1) = f(a) \circ f(1)$, we get that $\tau^{f(1)} = \tau^z$ is a group action. This contradicts with the assumption that τ^z was not a group action.

Example

Let us consider a two-sided brace $U(\mathbb{Z}/16\mathbb{Z})$. Observe that in this case \check{r}_7 is not equivalent to \check{r}_1 as $5 - 1 + 7 = 11 \pmod{16}$ and $5 \circ 7 = 3 \pmod{16}$. One can easily compute that

$$au_{15}^7(5) = 5 \pmod{16}$$
 & $au_3^7 au_5^7(5) = 13 \pmod{16}$.

Thank you

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)