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Formulation

Definition
A set-theoretical solution of the Yang-Baxter equation is a pair
(X,S) where X is a non-empty set and S a map from X x X to
itself so that

512523512 523512523

We write S(x,y) = (gx(y),f,(x)) for x,y in X.

1. A solution (X,S) is called non-degenerate if the maps
gx, fx : X = X are bijections for every x in X.

2. A pair (X,S) is called involutive if S? = Idx.

All solutions considered will be finite non-degenerate and
involutive.
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Fortmulation

The structure group of a solution (X, S)
G(X,S) = (X]|xy = tz where S(x,y) = (t,2)),

that is: the group generated by the elements of X and with
defining relations given by S;

The assignment x — gy is a right action of G (X,S) on X, which
allows to define the permutation group of a solution ¢ x ), as the
the subgroup of Symy generated by {gy | x in X}.

Theorem ([9, 2.14])

Given a solution (X,S), its structure group G(X,S) is solvable.



Structures

Non-degenerate involutive solutions are related with several
strucures, such as:

Left Braces
Cycle Sets
Garside Monoids

Linear groups

oA b

|-groups
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Decomposable Solutions

Definition ([9, 2.5])
Given a non-degenerate involutive solution (X, S):
1. A subset Y of X is said to be an invariant subset if
S(YxY)cYxY.
2. An invariant subset Y C X is said to be non-degenerate if
(Y,S|yxy) is a non-degenerate involutive solution.

3. (X,S) is said to be decomposable if it is a union of two
nonempty disjoint non-degenerate invariant subsets.
Otherwise, (X,S) is said to be indecomposable.
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Decomposable Solutions

Theorem ([9, 2.11])

A solution (X,S) is indecomposable if and only if 9 x sy acts
transitively on X.

Definition
The diagonal map of a solution is defined as T(x) = £, }(x) for
x € X. Soltuions with T = Id are called square-free.

Theorem ([5, 1])
Every square-free solution (X,S) with |X| > 1 is decomposable.
Theorem ([6, A])

Let (X,S) be a solution with |X| > 1. If the order of T and the
cardinality of X are coprime, then (X,S) is decomposable.
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Retractable Solutions
Given a solution (X,S), the relation ~ defined by x; ~ x; if gi = gj
is called the retracted relation on X.
A solution which is not retractrable is said irretractable.

This relation induces a new solution (Y,?) where

S(x,y) = (gx (y),fy(x)) called retracted solution, also denoted
by Ret(X,S).
Inductively, it is defined Ret (X,S) = Ret (Retk*1 (X,S)).

If there exists m so that Ret” (X, S) has cardinality one, then
(X,S) is called multipermutation solution of level m.
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About Retraction

Proposition ([8, 4.2] )
The structural group of a retractable solution is poly-infinite cyclic.
Proposition ([9, 3.8])

If the retracted solution is indecomposable, then the original is also
indecomposable.

Theorem ([4, 3.5])

Let (X,S) be a solution. If the permutation group Y(x,s) has an
abelian normal Sylow p-subgroup, then (X,S) is retractable.
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About Multipermuation

Theorem ([1, 6.5])

Let (X,S) be a solution. If its permutation group ¥x sy is abelian,
then (X,S) is a multipermutation solution.

Conjecture ([7, 2.28])
Every square-free solution (X,S) of cardinality n>2 is a

multipermutation solution of level m < n.

It is false in the general case. However it holds for the abelian
case, and if no power of a prime divides |X|. See [3, 1, 4]
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Lemma ([11, 34])
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About Multipermuation

Lemma ([11, 34])

Let (X,S) be a solution of a finite multipermutation level and
Y C X be such that S(Y,Y) C(Y,Y), then (Y,S)y) is also a
solution with mpl(Y,S") < mpl(X,S).

Lemma ([11, 36])

Let (X,S) be a finite multipermutation solution with |X|> 1. If
for every x € X there is y € X such that S(x,y) = (y,x), then the
solution (X, S) is decomposable.
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About Imprimitivity

Theorem ([9, 2.12])

Let (X,S) be an indecomposable solution with |X| = p, a prime.
Then (X,S) is isomorphic to the cyclic permutation solution
(Z/)pZ,Sy), where So(x,y)=(y —1,x+1).

Theorem ([2, 3.1])

Let (X,S) be a finite “primitive solution” of the YBE with |X| > 1.
Then | X| is prime.
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About Primes

Definition

A solution (X, S) is said of sqare-free cardinality if | X|=p1-...- px,
for different primes py, ..., pk.

Theorem ([4, 1.1])

Let (X,S) be a solution of sqare-free cardinality. Then (X,S) is a
multipermutation solution with mpl(X,S) < k.
Theorem ([4])

Given a solution (X,S) of square-free cardinality with
[X|=pp---- Pk, the following hold:

L. p1,...,pn are the only primes dividing the order of 4 x s).
2. The Sylow pj-subgroups of ¥ x s are elementary abelian.
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About Primes

Theorem ([10])

There exists an integer d >0 and a finite quotient W of G (X,S)
of size d" that characterizes the solution.

W has 9 x sy as a quotient group (up to isomorphism), and the
order of the diagonal map T divides d.

Theorem (Sergio Camp, Radl Sastriques)
Let (X,S) indecomposable solution. If 4 x sy has an element of
prime order q, then either:

» g divides | X|, or

» g divides some p” —1, with p prime and p” dividing | X].

Moreover, if |X| = p™ and p# q, g has to divide p" — 1, for some
r<m-1.
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About Simple Solutions

Definition ([4])

We say that a finite indecomposable solution (X,S) of the YBE
has primitive level k if k is the biggest positive integer such that
there exist solutions (X,S) = (X1, 51),(X2,52),...,(Xk, Sk) and
epimorphisms of solutions p; +1: (X;,S;) = (Xj+1S — i+ 1)with
|Xi| > |Xit1] > 1, for 1 <i< k—1, and (X, Sk) is primitive.

Definition ([4, 3.1])

A solution (X, S) is simple if | X| > 1 and for every epimorphism
f:(X,S5)— (Y,S’) of solutions either f is an isomorphism or
lY|=1.

Lemma ([4, 3.2])

Assume that (X, S) is a simple solution of the YBE. Then it is
indecomposable if | X| > 2 and it is irretractable if |X| is not a
prime number.



End

Thanks for your attention !
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