About Non-degenerated Involutive solutions of the Yang-Baxter Equation

Raúl Sastriques Guardiola (UV)
Sergio Camp Mora (UPV)

Groups, Rings and the Yang-Baxter equation, Blankerberge

June 23, 2023

Formulation

Definition

A set-theoretical solution of the Yang-Baxter equation is a pair (X, S) where X is a non-empty set and S a map from $X \times X$ to itself so that

$$
S^{12} S^{23} S^{12}=S^{23} S^{12} S^{23}
$$

We write $S(x, y)=\left(g_{x}(y), f_{y}(x)\right)$ for x, y in X.

Formulation

Definition

A set-theoretical solution of the Yang-Baxter equation is a pair (X, S) where X is a non-empty set and S a map from $X \times X$ to itself so that

$$
S^{12} S^{23} S^{12}=S^{23} S^{12} S^{23}
$$

We write $S(x, y)=\left(g_{x}(y), f_{y}(x)\right)$ for x, y in X.

1. A solution (X, S) is called non-degenerate if the maps $g_{x}, f_{x}: X \rightarrow X$ are bijections for every x in X.

Formulation

Definition

A set-theoretical solution of the Yang-Baxter equation is a pair (X, S) where X is a non-empty set and S a map from $X \times X$ to itself so that

$$
S^{12} S^{23} S^{12}=S^{23} S^{12} S^{23} .
$$

We write $S(x, y)=\left(g_{x}(y), f_{y}(x)\right)$ for x, y in X.

1. A solution (X, S) is called non-degenerate if the maps $g_{x}, f_{x}: X \rightarrow X$ are bijections for every x in X.
2. A pair (X, S) is called involutive if $S^{2}=\operatorname{Id}_{X}$.

Formulation

Definition

A set-theoretical solution of the Yang-Baxter equation is a pair (X, S) where X is a non-empty set and S a map from $X \times X$ to itself so that

$$
S^{12} S^{23} S^{12}=S^{23} S^{12} S^{23} .
$$

We write $S(x, y)=\left(g_{x}(y), f_{y}(x)\right)$ for x, y in X.

1. A solution (X, S) is called non-degenerate if the maps $g_{x}, f_{x}: X \rightarrow X$ are bijections for every x in X.
2. A pair (X, S) is called involutive if $S^{2}=\operatorname{ld} X$.

All solutions considered will be finite non-degenerate and involutive.

Fortmulation

The structure group of a solution (X, S)

$$
G(X, S)=\langle X| x y=t z \text { where } S(x, y)=(t, z)\rangle
$$

that is: the group generated by the elements of X and with defining relations given by S;

Fortmulation

The structure group of a solution (X, S)

$$
G(X, S)=\langle X| x y=t z \text { where } S(x, y)=(t, z)\rangle
$$

that is: the group generated by the elements of X and with defining relations given by S;

The assignment $x \rightarrow g_{x}$ is a right action of $G(X, S)$ on X, which allows to define the permutation group of a solution $\mathscr{G}_{(X, S)}$, as the the subgroup of Sym_{X} generated by $\left\{g_{x} \mid x\right.$ in $\left.X\right\}$.

Fortmulation

The structure group of a solution (X, S)

$$
G(X, S)=\langle X| x y=t z \text { where } S(x, y)=(t, z)\rangle
$$

that is: the group generated by the elements of X and with defining relations given by S;

The assignment $x \rightarrow g_{x}$ is a right action of $G(X, S)$ on X, which allows to define the permutation group of a solution $\mathscr{G}_{(X, S)}$, as the the subgroup of Sym_{X} generated by $\left\{g_{x} \mid x\right.$ in $\left.X\right\}$.
Theorem ([9, 2.14])
Given a solution (X, S), its structure group $G(X, S)$ is solvable.

Structures

Non-degenerate involutive solutions are related with several strucures, such as:

1. Left Braces
2. Cycle Sets
3. Garside Monoids
4. Linear groups
5. I-groups

Decomposable Solutions

Definition ([9, 2.5])

Given a non-degenerate involutive solution (X, S) :

1. A subset Y of X is said to be an invariant subset if $S(Y \times Y) \subset Y \times Y$.

Decomposable Solutions

Definition ([9, 2.5])

Given a non-degenerate involutive solution (X, S) :

1. A subset Y of X is said to be an invariant subset if $S(Y \times Y) \subset Y \times Y$.
2. An invariant subset $Y \subset X$ is said to be non-degenerate if $\left(Y,\left.S\right|_{Y \times Y}\right)$ is a non-degenerate involutive solution.

Decomposable Solutions

Definition ([9, 2.5])

Given a non-degenerate involutive solution (X, S) :

1. A subset Y of X is said to be an invariant subset if $S(Y \times Y) \subset Y \times Y$.
2. An invariant subset $Y \subset X$ is said to be non-degenerate if $\left(Y,\left.S\right|_{Y \times Y}\right)$ is a non-degenerate involutive solution.
3. (X, S) is said to be decomposable if it is a union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X, S) is said to be indecomposable.

Decomposable Solutions

Theorem ([9, 2.11])
A solution (X, S) is indecomposable if and only if $\mathscr{G}_{(X, S)}$ acts transitively on X.

Decomposable Solutions

Theorem ([9, 2.11])
A solution (X, S) is indecomposable if and only if $\mathscr{G}_{(X, S)}$ acts transitively on X.

Definition
The diagonal map of a solution is defined as $T(x)=f_{x}^{-1}(x)$ for $x \in X$. Soltuions with $T=I d$ are called square-free.

Decomposable Solutions

Theorem ([9, 2.11])
A solution (X, S) is indecomposable if and only if $\mathscr{G}_{(X, S)}$ acts transitively on X.

Definition
The diagonal map of a solution is defined as $T(x)=f_{x}^{-1}(x)$ for $x \in X$. Soltuions with $T=I d$ are called square-free.
Theorem ($[5,1]$)
Every square-free solution (X, S) with $|X|>1$ is decomposable.

Decomposable Solutions

Theorem ([9, 2.11])
A solution (X, S) is indecomposable if and only if $\mathscr{G}_{(X, S)}$ acts transitively on X.

Definition
The diagonal map of a solution is defined as $T(x)=f_{x}^{-1}(x)$ for $x \in X$. Soltuions with $T=I d$ are called square-free.
Theorem ($[5,1]$)
Every square-free solution (X, S) with $|X|>1$ is decomposable.
Theorem ($[6, A]$)
Let (X, S) be a solution with $|X|>1$. If the order of T and the cardinality of X are coprime, then (X, S) is decomposable.

Retractable Solutions

Given a solution (X, S), the relation \sim defined by $x_{i} \sim x_{j}$ if $g_{i}=g_{j}$ is called the retracted relation on X.

Retractable Solutions

Given a solution (X, S), the relation \sim defined by $x_{i} \sim x_{j}$ if $g_{i}=g_{j}$ is called the retracted relation on X.

A solution which is not retractrable is said irretractable.

Retractable Solutions

Given a solution (X, S), the relation \sim defined by $x_{i} \sim x_{j}$ if $g_{i}=g_{j}$ is called the retracted relation on X.

A solution which is not retractrable is said irretractable.
This relation induces a new solution (\bar{X}, \bar{S}) where $\bar{S}(\bar{x}, \bar{y})=\left(\overline{g_{x}(y)}, \overline{f_{y}(x)}\right)$, called retracted solution, also denoted by $\operatorname{Ret}(X, S)$.

Retractable Solutions

Given a solution (X, S), the relation \sim defined by $x_{i} \sim x_{j}$ if $g_{i}=g_{j}$ is called the retracted relation on X.

A solution which is not retractrable is said irretractable.
This relation induces a new solution (\bar{X}, \bar{S}) where $\bar{S}(\bar{x}, \bar{y})=\left(\overline{g_{x}(y)}, \overline{f_{y}(x)}\right)$, called retracted solution, also denoted by $\operatorname{Ret}(X, S)$.
Inductively, it is defined $\operatorname{Ret}^{k}(X, S)=\operatorname{Ret}\left(\operatorname{Ret}^{k-1}(X, S)\right)$.

Retractable Solutions

Given a solution (X, S), the relation \sim defined by $x_{i} \sim x_{j}$ if $g_{i}=g_{j}$ is called the retracted relation on X.

A solution which is not retractrable is said irretractable.
This relation induces a new solution (\bar{X}, \bar{S}) where $\bar{S}(\bar{x}, \bar{y})=\left(\overline{g_{x}(y)}, \overline{f_{y}(x)}\right)$, called retracted solution, also denoted by $\operatorname{Ret}(X, S)$.
Inductively, it is defined $\operatorname{Ret}^{k}(X, S)=\operatorname{Ret}\left(\operatorname{Ret}^{k-1}(X, S)\right)$.
If there exists m so that $\operatorname{Ret}^{m}(X, S)$ has cardinality one, then (X, S) is called multipermutation solution of level m.

About Retraction

Proposition ([8, 4.2])
The structural group of a retractable solution is poly-infinite cyclic.

About Retraction

Proposition ([8, 4.2])
The structural group of a retractable solution is poly-infinite cyclic.
Proposition ([9, 3.8])
If the retracted solution is indecomposable, then the original is also indecomposable.

About Retraction

Proposition ([8, 4.2])
The structural group of a retractable solution is poly-infinite cyclic.
Proposition ([9, 3.8])
If the retracted solution is indecomposable, then the original is also indecomposable.

Theorem ([4, 3.5])
Let (X, S) be a solution. If the permutation group $\mathscr{G}_{(X, S)}$ has an abelian normal Sylow p-subgroup, then (X, S) is retractable.

About Multipermuation

Theorem ([1, 6.5])
Let (X, S) be a solution. If its permutation group $\mathscr{G}_{(X, S)}$ is abelian, then (X, S) is a multipermutation solution.

About Multipermuation

Theorem ([1, 6.5])
Let (X, S) be a solution. If its permutation group $\mathscr{G}_{(X, S)}$ is abelian, then (X, S) is a multipermutation solution.

Conjecture ([7, 2.28])
Every square-free solution (X, S) of cardinality $n \geq 2$ is a multipermutation solution of level $m<n$.

About Multipermuation

Theorem ([1, 6.5])
Let (X, S) be a solution. If its permutation group $\mathscr{G}_{(X, S)}$ is abelian, then (X, S) is a multipermutation solution.

Conjecture ([7, 2.28])
Every square-free solution (X, S) of cardinality $n \geq 2$ is a multipermutation solution of level $m<n$.

It is false in the general case. However it holds for the abelian case, and if no power of a prime divides $|X|$. See $[3,1,4]$

About Multipermuation

Lemma ([11, 34])

Let (X, S) be a solution of a finite multipermutation level and $Y \subseteq X$ be such that $S(Y, Y) \subseteq(Y, Y)$, then $\left(Y, S_{\mid Y}\right)$ is also a solution with $\mathrm{mpl}\left(Y, S^{\prime}\right) \leq m p l(X, S)$.

About Multipermuation

Lemma ([11, 34])

Let (X, S) be a solution of a finite multipermutation level and $Y \subseteq X$ be such that $S(Y, Y) \subseteq(Y, Y)$, then $\left(Y, S_{Y}\right)$ is also a solution with $\mathrm{mpl}\left(Y, S^{\prime}\right) \leq m p l(X, S)$.
Lemma ([11, 36])
Let (X, S) be a finite multipermutation solution with $|X|>1$. If for every $x \in X$ there is $y \in X$ such that $S(x, y)=(y, x)$, then the solution (X, S) is decomposable.

About Imprimitivity

Theorem ([9, 2.12])
Let (X, S) be an indecomposable solution with $|X|=p$, a prime. Then (X, S) is isomorphic to the cyclic permutation solution
$\left(\mathbb{Z} / p \mathbb{Z}, S_{0}\right)$, where $S_{0}(x, y)=(y-1, x+1)$.

About Imprimitivity

Theorem ([9, 2.12])
Let (X, S) be an indecomposable solution with $|X|=p$, a prime.
Then (X, S) is isomorphic to the cyclic permutation solution
$\left(\mathbb{Z} / p \mathbb{Z}, S_{0}\right)$, where $S_{0}(x, y)=(y-1, x+1)$.
Theorem ([2, 3.1])
Let (X, S) be a finite "primitive solution" of the $Y B E$ with $|X|>1$. Then $|X|$ is prime.

About Primes

Definition
A solution (X, S) is said of sqare-free cardinality if $|X|=p_{1} \cdot \ldots \cdot p_{k}$, for different primes p_{1}, \ldots, p_{k}.

About Primes

Definition

A solution (X, S) is said of sqare-free cardinality if $|X|=p_{1} \cdot \ldots \cdot p_{k}$, for different primes p_{1}, \ldots, p_{k}.

Theorem ([4, 1.1])
Let (X, S) be a solution of sqare-free cardinality. Then (X, S) is a multipermutation solution with $m p l(X, S) \leq k$.

About Primes

Definition

A solution (X, S) is said of sqare-free cardinality if $|X|=p_{1} \cdot \ldots \cdot p_{k}$, for different primes p_{1}, \ldots, p_{k}.

Theorem ([4, 1.1])
Let (X, S) be a solution of sqare-free cardinality. Then (X, S) is a multipermutation solution with $m p /(X, S) \leq k$.

Theorem ([4])
Given a solution (X, S) of square-free cardinality with $|X|=p_{1} \cdots p_{k}$, the following hold:

About Primes

Definition

A solution (X, S) is said of sqare-free cardinality if $|X|=p_{1} \cdot \ldots \cdot p_{k}$, for different primes p_{1}, \ldots, p_{k}.

Theorem ([4, 1.1])
Let (X, S) be a solution of sqare-free cardinality. Then (X, S) is a multipermutation solution with $m p l(X, S) \leq k$.

Theorem ([4])
Given a solution (X, S) of square-free cardinality with $|X|=p_{1} \cdots p_{k}$, the following hold:

1. p_{1}, \ldots, p_{n} are the only primes dividing the order of $\mathscr{G}_{(X, S)}$.

About Primes

Definition

A solution (X, S) is said of sqare-free cardinality if $|X|=p_{1} \cdot \ldots \cdot p_{k}$, for different primes p_{1}, \ldots, p_{k}.

Theorem ([4, 1.1])
Let (X, S) be a solution of sqare-free cardinality. Then (X, S) is a multipermutation solution with $m p /(X, S) \leq k$.

Theorem ([4])
Given a solution (X, S) of square-free cardinality with $|X|=p_{1} \cdots p_{k}$, the following hold:

1. p_{1}, \ldots, p_{n} are the only primes dividing the order of $\mathscr{G}_{(X, S)}$.
2. The Sylow p_{i}-subgroups of $\mathscr{G}_{(X, S)}$ are elementary abelian.

About Primes

Theorem ([10])
There exists an integer $d>0$ and a finite quotient W of $G(X, S)$ of size d^{n} that characterizes the solution.

About Primes

Theorem ([10])
There exists an integer $d>0$ and a finite quotient W of $G(X, S)$ of size d^{n} that characterizes the solution.
W has $\mathscr{G}_{(X, S)}$ as a quotient group (up to isomorphism), and the order of the diagonal map T divides d.

About Primes

Theorem ([10])
There exists an integer $d>0$ and a finite quotient W of $G(X, S)$ of size d^{n} that characterizes the solution.
W has $\mathscr{G}_{(X, S)}$ as a quotient group (up to isomorphism), and the order of the diagonal map T divides d.

Theorem (Sergio Camp, Raúl Sastriques)
Let (X, S) indecomposable solution. If $\mathscr{G}_{(X, S)}$ has an element of prime order q, then either:

- q divides $|X|$, or
$-q$ divides some $p^{n}-1$, with p prime and p^{n} dividing $|X|$.
Moreover, if $|X|=p^{m}$ and $p \neq q, q$ has to divide $p^{r}-1$, for some $r \leq m-1$.

About Simple Solutions

Definition ([4])

We say that a finite indecomposable solution (X, S) of the YBE has primitive level \mathbf{k} if k is the biggest positive integer such that there exist solutions $(X, S)=\left(X_{1}, S_{1}\right),\left(X_{2}, S_{2}\right), \ldots,\left(X_{k}, S_{k}\right)$ and epimorphisms of solutions $p_{i}+1:\left(X_{i}, S_{i}\right) \rightarrow\left(X_{i+1} S-i+1\right)$ with $\left|X_{i}\right|>\left|X_{i+1}\right|>1$, for $1 \leq i \leq k-1$, and $\left(X_{k}, S_{k}\right)$ is primitive.

About Simple Solutions

Definition ([4])

We say that a finite indecomposable solution (X, S) of the YBE has primitive level \mathbf{k} if k is the biggest positive integer such that there exist solutions $(X, S)=\left(X_{1}, S_{1}\right),\left(X_{2}, S_{2}\right), \ldots,\left(X_{k}, S_{k}\right)$ and epimorphisms of solutions $p_{i}+1:\left(X_{i}, S_{i}\right) \rightarrow\left(X_{i+1} S-i+1\right)$ with $\left|X_{i}\right|>\left|X_{i+1}\right|>1$, for $1 \leq i \leq k-1$, and $\left(X_{k}, S_{k}\right)$ is primitive.

Definition ([4, 3.1])
A solution (X, S) is simple if $|X|>1$ and for every epimorphism $f:(X, S) \longrightarrow\left(Y, S^{\prime}\right)$ of solutions either f is an isomorphism or $|Y|=1$.

About Simple Solutions

Definition ([4])

We say that a finite indecomposable solution (X, S) of the YBE has primitive level \mathbf{k} if k is the biggest positive integer such that there exist solutions $(X, S)=\left(X_{1}, S_{1}\right),\left(X_{2}, S_{2}\right), \ldots,\left(X_{k}, S_{k}\right)$ and epimorphisms of solutions $p_{i}+1:\left(X_{i}, S_{i}\right) \rightarrow\left(X_{i+1} S-i+1\right)$ with $\left|X_{i}\right|>\left|X_{i+1}\right|>1$, for $1 \leq i \leq k-1$, and $\left(X_{k}, S_{k}\right)$ is primitive.

Definition ([4, 3.1])
A solution (X, S) is simple if $|X|>1$ and for every epimorphism $f:(X, S) \longrightarrow\left(Y, S^{\prime}\right)$ of solutions either f is an isomorphism or $|Y|=1$.

Lemma ([4, 3.2])
Assume that (X, S) is a simple solution of the YBE. Then it is indecomposable if $|X|>2$ and it is irretractable if $|X|$ is not a prime number.

End

Thanks for your attention!

囯 Ferran Cedó，Eric Jespers，and Jan Okniński．
Braces and the yang－baxter equation．
Communications in Mathematical Physics，327（1）：101－116， 2014.

嗇 Ferran Cedó，Eric Jespers，and Jan Okniński．
Primitive set－theoretic solutions of the yang－baxter equation．
Communications in Contemporary Mathematics，page 2150105， 2022.

Ferran Cedó，Eric Jespers，and Jan Okniński．
Retractability of set theoretic solutions of the yang－baxter equation．
Advances in Mathematics，224（6）：2472－2484， 2010.
Ferran Cedó and Jan Okniński．
Indecomposable solutions of the yang－baxter equation of square－free cardinality．
Arxiv， 2022.
囯 Wolfgang Rump．

A decomposition theorem for square－free unitary solutions of the quantum Yang－Baxter equation．
Adv．Math．，193（1）：40－55， 2005.
目 Sergio Camp－Mora and Raúl Sastriques．
A Criterion for Decomposabilty in QYBE．
International Mathematics Research Notices， 122021.
rnab357．
围 Tatiana Gateva－Ivanova．
A combinatorial approach to the set－theoretic solutions of the yang－baxter equation．
Journal of mathematical physics，45（10）：3828－3858， 2004.
䍰 Eric Jespers and Jan Okniński．
Monoids and groups of I－type．
Algebr．Represent．Theory，8（5）：709－729， 2005.
㐭 Pavel Etingof，Travis Schedler，and Alexandre Soloviev． Set－theoretical solutions to the quantum Yang－Baxter equation．
Duke Math．J．，100（2）：169－209， 1999.

Patrick Dehornoy.
Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs.
Adv. Math., 282:93-127, 2015.
國 Agata Smoktunowicz and Alicja Smoktunowicz.
Set-theoretic solutions of the yang-baxter equation and new classes of r-matrices.
Linear Algebra and its Applications, 546:86-114, 2018.

