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Quotients of twisted group algebra and IYB groups

Definitions

A grading of an algebra A by a group Γ is a vector space
decomposition A =

⊕
γ∈ΓAγ such that Aγ1 · Aγ2 ⊆ Aγ1·γ2 for

every γ1, γ2 ∈ Γ.

The subalgebra Ae is called the base algebra of the grading,
for e the identity element of Γ.
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Examples

The natural Z-grading of a polynomial ring A = C[x ]. Here
Ai = span{x i}.

The natural G -grading of the group algebra A = CG . Here
Ag = span{g}.
More generally, a twisted group algebra CαG is an associative
algebra with basis {ug}g∈G , where

ug1ug2 = α(g1, g2)ug1g2 ,

for α ∈ Z 2(G ,C∗).

A = CαG is equipped with a natural twisted grading given by
Ag = span{ug}.
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Example

Consider the following G = Cn × Cn = 〈σ〉 × 〈τ〉-grading of
A = Mn(C). For ηn be an n-th primitive root of unity, let
Aσiτ j =spanC(uiσu

j
τ ), where

uσ =


0 0 · · · 0 1
1 0 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 , uτ =


1 0 0 · · · 0
0 ηn 0 · · · 0
...

. . .
...

0 0 0 · · · ηn−1
n


Note that uτuσ = ηnuσuτ .

This grading can be considered as a twisted group algebra
CαG where α ∈ Z 2(G ,C∗) is defined by uσiτ j = uiσu

j
τ .
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Two types of gradings of Mn(C)

We see that unlike group algebras, twisted group algebra CαG
can be simple, that is matrix algebra Mn(C) s.t n2 = |G |. In
this case we say that G is of central type and α (or [α]) is
nondegenerate. In those cases, Mn(C) is equipped with the
natural twisted grading.

On the other hand, for any group H, an n-tuple
(h1, h2, . . . , hn) ∈ Hn induces an elementary H-grading on

A = Mn(C) by setting Ah = span{Eij |h = hih
−1
j }.

A particular case which is called an
elementary crossed product grading is where H is of order n
and the n-tuple consists of the distinct elements in H.
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Example of an elementary grading

Recall that Ah = span{Eij |h = hih
−1
j } for (h1, h2, . . . , hn) ∈ Hn.

Let A = M2(C) and let G ∼= C2 = 〈σ〉. Then the elementary
grading determined by (1, σ) is

Ae = span{E11,E22}, Aσ = span{E12,E21}
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Quotient gradings

For a Γ-grading A =
⊕

γ∈ΓAγ and N C Γ there is a natural
quotient Γ/N-grading given by

A =
⊕
γ̄∈Γ/N

Aγ̄ ,

where Aγ̄ :=
⊕

γ∈γ̄ Aγ .

A main motivation here is that quotient gradings admit a key
role in the study of the intrinsic fundamental group (Cibils,
Redondo and Solotar) of an algebra A which is essentially the
inverse limit of a diagram whose objects are groups which
grade A in a connected way, and whose morphisms are group
epimorphisms which correspond to quotient gradings between
these gradings.
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Example of a quotient grading

A =
⊕

γ̄∈Γ/N Aγ̄ , where Aγ̄ :=
⊕

γ∈γ̄ Aγ .

Consider the G = C2 × C2 = 〈σ〉 × 〈τ〉 twisted grading of
A = M2(C). determined by

u1 =

(
1 0
0 1

)
, uσ =

(
0 1
1 0

)
, uτ =

(
1 0
0 −1

)
, uστ =

(
0 −1
1 0

)
.

For N = 〈τ〉 we get a G/N-grading determined by

Aē = span{E11,E22}, Aσ̄ = span{E12,E21}.

We conclude that this quotient of a twisted grading is an
elementary crossed product C2-grading determined by (ē, σ̄).
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Question

For which groups H of order n, the associated elementary crossed
product H-grading of Mn(C) is a quotient grading of a twisted
grading CαG of Mn(C) for some group of central type G of order
n2 and a nondegenerate α ∈ Z 2(G ,C∗)?

Remark

Clearly, just by order considerations, in those cases we have
|N| = |H ∼= G/N| =

√
|G |.

Liebler, Yellen (1979) and Howlett, Isaacs (1982)

Any group of central type is solvable.

Hence, in the above question a necessary condition for H is to be
solvable.
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Bahturin, Zaicev (2002) and Năstăsescu, van Oystaeyen (2004)

Any Γ-grading of Mn(C) is graded isomorphic to a graded tensor
product Mt(C)⊗ CαG where Mt(C) is equipped with an
elementary grading, G a subgroup of central type of Γ and α is
nondegenerate.

By the above, in order to understand quotient gradings of
Mn(C) it is sufficient to understand quotient gradings of
twisted gradings.

This is because quotient H/N-grading of elementary H
gradings which correspond to a tuple (h1, h2, . . . , hn) ∈ Hn is
given simply by taking the appropriate elements in the tuple
(h̄1, h̄2, . . . , h̄n) ∈ (H/N)n.
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Quotients of twisted gradings

Let CαG = A = Mn(C) and let N C G . Then the base
algebra of the quotient G/N grading is Aē = CαN.

The twisted group algebra CαG determines a G/N-action on
the set Irr(CαN) of isomorphism types of irreducible
CαN-modules (alternatively, the set Irr(N, α) of irreducible
α-projective representations of N).

For α ∈ Z 2(G ,C∗) nondegenerate, this action is transitive,
and consequently all the irreducible CαN-modules are of the
same dimension.

For [M] ∈Irr(CαN) let IM = ICαG (M) < G/N be its
stabilizer subgroup (or the inertia subgroup) under the
G/N-action.

Yuval Ginosar and Ofir Schnabel Quotient gradings and IYB groups



Introduction
Main question

Quotients of twisted group algebra and IYB groups

Quotients of twisted gradings

Let CαG = A = Mn(C) and let N C G . Then the base
algebra of the quotient G/N grading is Aē = CαN.
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The twisted group algebra CαG determines a G/N-action on
the set Irr(CαN) of isomorphism types of irreducible
CαN-modules (alternatively, the set Irr(N, α) of irreducible
α-projective representations of N).

For α ∈ Z 2(G ,C∗) nondegenerate, this action is transitive,
and consequently all the irreducible CαN-modules are of the
same dimension.

For [M] ∈Irr(CαN) let IM = ICαG (M) < G/N be its
stabilizer subgroup (or the inertia subgroup) under the
G/N-action.

Yuval Ginosar and Ofir Schnabel Quotient gradings and IYB groups



Introduction
Main question

Quotients of twisted group algebra and IYB groups

Theorem

Let CαG ∼= Mn(C), let N C G and let [M] ∈Irr(CαN). The G/N
quotient grading admits a decomposition as

Mt(C)⊗ (CωIM),

where Mt(C) possess an elementary grading and [ω] ∈ H2(IM ,C∗)
is Mackey’s obstruction cohomology class which corresponds to
[M].

Corollary

With the above notation the quotient grading is elementary if and
only if IM is trivial, that is the action of G/N on Irr(CαN) is free.
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As stated above, the quotient G/N-grading is elementary if
and only if G/N acts freely on Irr(CαN). In this case, since
the action is also transitive, we have |Irr(CαN)| = |G/N|.

Consequently, for |N| =
√
|G |, the G/N-grading is elementary

(and hence elementary crossed product) if and only if
|Irr(CαN)| = |N| which happens if and only if N is abelian
and the restriction of α to N is trivial (that is N is isotropic
with respect to α).
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Corollary

Let α ∈ Z 2(G ,C∗) be nondegenerate and let N C G . The
G/N-quotient grading of CαG is an elementary crossed product
grading if and only if N is isotropic with respect to α and
|N| =

√
|G |.

Example

Let G = Cn × Cn = 〈σ〉 × 〈τ〉, let ηn be an n-th primitive root of
unity and consider the G -twisted grading of A = Mn(C) which
corresponds to [α] ∈ H2(G ,C∗) defined by

uiτ = uτ i , uiσ = uσi , uτuσ = ηnuσuτ .

Now, let N = 〈τ〉 ∼= Cn. Then, the G/N quotient grading is an
elementary crossed product grading.
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Theorem

A subgroup L of G which is isotropic with respect to
nondegenerate α ∈ Z 2(G ,C∗) such that |L| =

√
|G | is called

Lagrangian with respect to α.

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and
only if there exists a group of central type G and a normal
Lagrangian LC G with respect to a nondegenerate α ∈ Z 2(G ,C∗)
such that H ∼= G/L.

So we have the following characterization of IYB groups.

Theorem

A group H of order n is IYB if and only if its corresponding
elementary crossed-product grading is a quotient of some twisted
grading of Mn(C).

Yuval Ginosar and Ofir Schnabel Quotient gradings and IYB groups



Introduction
Main question

Quotients of twisted group algebra and IYB groups

Theorem

A subgroup L of G which is isotropic with respect to
nondegenerate α ∈ Z 2(G ,C∗) such that |L| =

√
|G | is called

Lagrangian with respect to α.

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and
only if there exists a group of central type G and a normal
Lagrangian LC G with respect to a nondegenerate α ∈ Z 2(G ,C∗)
such that H ∼= G/L.

So we have the following characterization of IYB groups.

Theorem

A group H of order n is IYB if and only if its corresponding
elementary crossed-product grading is a quotient of some twisted
grading of Mn(C).

Yuval Ginosar and Ofir Schnabel Quotient gradings and IYB groups



Introduction
Main question

Quotients of twisted group algebra and IYB groups

Theorem

A subgroup L of G which is isotropic with respect to
nondegenerate α ∈ Z 2(G ,C∗) such that |L| =

√
|G | is called

Lagrangian with respect to α.

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and
only if there exists a group of central type G and a normal
Lagrangian LC G with respect to a nondegenerate α ∈ Z 2(G ,C∗)
such that H ∼= G/L.

So we have the following characterization of IYB groups.

Theorem

A group H of order n is IYB if and only if its corresponding
elementary crossed-product grading is a quotient of some twisted
grading of Mn(C).

Yuval Ginosar and Ofir Schnabel Quotient gradings and IYB groups



Introduction
Main question

Quotients of twisted group algebra and IYB groups

Theorem

A subgroup L of G which is isotropic with respect to
nondegenerate α ∈ Z 2(G ,C∗) such that |L| =

√
|G | is called

Lagrangian with respect to α.

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and
only if there exists a group of central type G and a normal
Lagrangian LC G with respect to a nondegenerate α ∈ Z 2(G ,C∗)
such that H ∼= G/L.

So we have the following characterization of IYB groups.

Theorem

A group H of order n is IYB if and only if its corresponding
elementary crossed-product grading is a quotient of some twisted
grading of Mn(C).

Yuval Ginosar and Ofir Schnabel Quotient gradings and IYB groups



Introduction
Main question

Quotients of twisted group algebra and IYB groups

Thank you.
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