Quotient gradings and IYB groups

Yuval Ginosar and Ofir Schnabel

June 22, 2023

Groups, Rings and the Yang-Baxter equation

Image: A match the second s

Definitions

A grading of an algebra A by a group Γ is a vector space decomposition A = ⊕_{γ∈Γ} A_γ such that A_{γ1} · A_{γ2} ⊆ A_{γ1·γ2} for every γ₁, γ₂ ∈ Γ.

Definitions

- A grading of an algebra A by a group Γ is a vector space decomposition A = ⊕_{γ∈Γ} A_γ such that A_{γ1} · A_{γ2} ⊆ A_{γ1·γ2} for every γ₁, γ₂ ∈ Γ.
- The subalgebra A_e is called the base algebra of the grading, for *e* the identity element of Γ .

イロト イヨト イヨト イヨト

2

Examples

• The natural \mathbb{Z} -grading of a polynomial ring $\mathcal{A} = \mathbb{C}[x]$. Here $\mathcal{A}_i = \operatorname{span}\{x^i\}$.

イロン 不同 とうほう 不同 とう

크

Examples

- The natural \mathbb{Z} -grading of a polynomial ring $\mathcal{A} = \mathbb{C}[x]$. Here $\mathcal{A}_i = \operatorname{span}\{x^i\}$.
- The natural G-grading of the group algebra $\mathcal{A} = \mathbb{C}G$. Here $\mathcal{A}_g = \operatorname{span}\{g\}$.

イロン 不同 とうほう 不同 とう

æ

Examples

- The natural \mathbb{Z} -grading of a polynomial ring $\mathcal{A} = \mathbb{C}[x]$. Here $\mathcal{A}_i = \operatorname{span}\{x^i\}$.
- The natural G-grading of the group algebra $\mathcal{A} = \mathbb{C}G$. Here $\mathcal{A}_g = \operatorname{span}\{g\}.$
- More generally, a twisted group algebra $\mathbb{C}^{\alpha}G$ is an associative algebra with basis $\overline{\{u_g\}_{g\in G}}$, where

$$u_{g_1}u_{g_2}=\alpha(g_1,g_2)u_{g_1g_2},$$

for $\alpha \in Z^2(G, \mathbb{C}^*)$.

イロン 不同 とうほう 不同 とう

Examples

- The natural \mathbb{Z} -grading of a polynomial ring $\mathcal{A} = \mathbb{C}[x]$. Here $\mathcal{A}_i = \operatorname{span}\{x^i\}$.
- The natural G-grading of the group algebra $\mathcal{A} = \mathbb{C}G$. Here $\mathcal{A}_g = \operatorname{span}\{g\}.$
- More generally, a twisted group algebra $\mathbb{C}^{\alpha}G$ is an associative algebra with basis $\overline{\{u_g\}_{g\in G}}$, where

$$u_{g_1}u_{g_2}=\alpha(g_1,g_2)u_{g_1g_2},$$

for $\alpha \in Z^2(G, \mathbb{C}^*)$.

• $\mathcal{A} = \mathbb{C}^{\alpha} G$ is equipped with a natural <u>twisted grading</u> given by $\mathcal{A}_g = \operatorname{span}\{u_g\}.$

(日) (四) (三) (三) (三)

Example

Consider the following $G = C_n \times C_n = \langle \sigma \rangle \times \langle \tau \rangle$ -grading of $\mathcal{A} = M_n(\mathbb{C})$. For η_n be an *n*-th primitive root of unity, let $\mathcal{A}_{\sigma^i \tau^j} = \operatorname{span}_{\mathbb{C}}(u_{\sigma}^i u_{\tau}^j)$, where

$$u_{\sigma} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \quad u_{\tau} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \eta_n & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \eta_n^{n-1} \end{pmatrix}$$

Note that $u_{\tau}u_{\sigma} = \eta_n u_{\sigma}u_{\tau}$.

イロン 不同 とうほう 不同 とう

æ

Example

Consider the following $G = C_n \times C_n = \langle \sigma \rangle \times \langle \tau \rangle$ -grading of $\mathcal{A} = M_n(\mathbb{C})$. For η_n be an *n*-th primitive root of unity, let $\mathcal{A}_{\sigma^i \tau^j} = \operatorname{span}_{\mathbb{C}}(u^i_{\sigma} u^j_{\tau})$, where

$$u_{\sigma} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}, \quad u_{\tau} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \eta_n & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \eta_n^{n-1} \end{pmatrix}$$

Note that $u_{\tau}u_{\sigma} = \eta_n u_{\sigma}u_{\tau}$.

• This grading can be considered as a twisted group algebra $\mathbb{C}^{\alpha}G$ where $\alpha \in Z^{2}(G, \mathbb{C}^{*})$ is defined by $u_{\sigma^{i}\tau^{j}} = u_{\sigma}^{i}u_{\tau}^{j}$.

Two types of gradings of $M_n(\mathbb{C})$

• We see that unlike group algebras, twisted group algebra $\mathbb{C}^{\alpha}G$ can be simple, that is matrix algebra $M_n(\mathbb{C})$ s.t $n^2 = |G|$. In this case we say that G is of central type and α (or $[\alpha]$) is nondegenerate. In those cases, $M_n(\mathbb{C})$ is equipped with the natural twisted grading.

Two types of gradings of $M_n(\mathbb{C})$

- We see that unlike group algebras, twisted group algebra $\mathbb{C}^{\alpha}G$ can be simple, that is matrix algebra $M_n(\mathbb{C})$ s.t $n^2 = |G|$. In this case we say that G is of central type and α (or $[\alpha]$) is nondegenerate. In those cases, $M_n(\mathbb{C})$ is equipped with the natural twisted grading.
- On the other hand, for any group H, an *n*-tuple $(h_1, h_2, \ldots, h_n) \in H^n$ induces an elementary *H*-grading on $\mathcal{A} = M_n(\mathbb{C})$ by setting $\mathcal{A}_h = \operatorname{span}\{E_{ij}|h = h_i h_j^{-1}\}.$

Two types of gradings of $M_n(\mathbb{C})$

- We see that unlike group algebras, twisted group algebra $\mathbb{C}^{\alpha}G$ can be simple, that is matrix algebra $M_n(\mathbb{C})$ s.t $n^2 = |G|$. In this case we say that G is of central type and α (or $[\alpha]$) is nondegenerate. In those cases, $M_n(\mathbb{C})$ is equipped with the natural twisted grading.
- On the other hand, for any group H, an *n*-tuple $(h_1, h_2, \ldots, h_n) \in H^n$ induces an elementary *H*-grading on $\mathcal{A} = M_n(\mathbb{C})$ by setting $\mathcal{A}_h = \operatorname{span}\{E_{ij}|h = h_i h_i^{-1}\}.$
- A particular case which is called an elementary crossed product grading is where *H* is of order *n* and the *n*-tuple consists of the distinct elements in *H*.

(日) (四) (三) (三) (三)

Example of an elementary grading

Recall that $\mathcal{A}_h = \operatorname{span}\{E_{ij}|h = h_i h_i^{-1}\}$ for $(h_1, h_2, \dots, h_n) \in H^n$.

イロン 不同 とくほど 不同 とう

크

Example of an elementary grading

Recall that
$$\mathcal{A}_h = \operatorname{span} \{ E_{ij} | h = h_i h_i^{-1} \}$$
 for $(h_1, h_2, \dots, h_n) \in H^n$.

• Let $\mathcal{A} = M_2(\mathbb{C})$ and let $G \cong C_2 = \langle \sigma \rangle$. Then the elementary grading determined by $(1, \sigma)$ is

$$\mathcal{A}_e = \mathsf{span}\{E_{11}, E_{22}\}, \quad \mathcal{A}_\sigma = \mathsf{span}\{E_{12}, E_{21}\}$$

イロン 不同 とくほど 不同 とう

Quotient gradings

• For a Γ -grading $\mathcal{A} = \bigoplus_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$ and $N \lhd \Gamma$ there is a natural quotient Γ/N -grading given by

$$\mathcal{A} = igoplus_{ar{\gamma} \in \Gamma/N} \mathcal{A}_{ar{\gamma}},$$

where
$$\mathcal{A}_{ar{\gamma}}:=igoplus_{\gamma\inar{\gamma}}\mathcal{A}_{\gamma}.$$

イロン 不同 とくほど 不同 とう

臣

Quotient gradings

• For a Γ -grading $\mathcal{A} = \bigoplus_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$ and $N \lhd \Gamma$ there is a natural quotient Γ/N -grading given by

$$\mathcal{A} = igoplus_{ar{\gamma} \in \Gamma/N} \mathcal{A}_{ar{\gamma}},$$

where $\mathcal{A}_{\bar{\gamma}} := \bigoplus_{\gamma \in \bar{\gamma}} \mathcal{A}_{\gamma}.$

• A main motivation here is that quotient gradings admit a key role in the study of the intrinsic fundamental group (Cibils, Redondo and Solotar) of an algebra \mathcal{A} which is essentially the inverse limit of a diagram whose objects are groups which grade \mathcal{A} in a connected way, and whose morphisms are group epimorphisms which correspond to quotient gradings between these gradings.

(日) (四) (三) (三) (三)

Example of a quotient grading

$$\mathcal{A} = \bigoplus_{\bar{\gamma} \in \mathsf{\Gamma}/\mathsf{N}} \mathcal{A}_{\bar{\gamma}}, \text{ where } \mathcal{A}_{\bar{\gamma}} := \bigoplus_{\gamma \in \bar{\gamma}} \mathcal{A}_{\gamma}.$$

イロン 不同 とくほど 不同 とう

Э

Example of a quotient grading

$$\begin{split} \mathcal{A} &= \bigoplus_{\bar{\gamma} \in \Gamma/N} \mathcal{A}_{\bar{\gamma}}, \text{ where } \mathcal{A}_{\bar{\gamma}} := \bigoplus_{\gamma \in \bar{\gamma}} \mathcal{A}_{\gamma}. \\ \bullet \text{ Consider the } \mathcal{G} &= \mathcal{C}_2 \times \mathcal{C}_2 = \langle \sigma \rangle \times \langle \tau \rangle \text{ twisted grading of } \\ \mathcal{A} &= \mathcal{M}_2(\mathbb{C}). \text{ determined by} \\ u_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, u_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, u_{\tau} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, u_{\sigma\tau} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \end{split}$$

イロト イヨト イヨト イヨト

э

Example of a quotient grading

$$\begin{split} \mathcal{A} &= \bigoplus_{\bar{\gamma} \in \Gamma/N} \mathcal{A}_{\bar{\gamma}}, \text{ where } \mathcal{A}_{\bar{\gamma}} := \bigoplus_{\gamma \in \bar{\gamma}} \mathcal{A}_{\gamma}. \\ \bullet \text{ Consider the } G &= C_2 \times C_2 = \langle \sigma \rangle \times \langle \tau \rangle \text{ twisted grading of } \\ \mathcal{A} &= M_2(\mathbb{C}). \text{ determined by} \\ u_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, u_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, u_{\tau} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, u_{\sigma\tau} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \end{split}$$

• For ${\it N}=\langle \tau
angle$ we get a ${\it G}/{\it N}$ -grading determined by

$$\mathcal{A}_{\bar{e}} = \mathsf{span}\{E_{11}, E_{22}\}, \quad \mathcal{A}_{\bar{\sigma}} = \mathsf{span}\{E_{12}, E_{21}\}.$$

イロン 不同 とくほと 不良 とう

크

Example of a quotient grading

$$\begin{split} \mathcal{A} &= \bigoplus_{\bar{\gamma} \in \Gamma/N} \mathcal{A}_{\bar{\gamma}}, \text{ where } \mathcal{A}_{\bar{\gamma}} := \bigoplus_{\gamma \in \bar{\gamma}} \mathcal{A}_{\gamma}. \\ \bullet \text{ Consider the } \mathcal{G} &= \mathcal{C}_2 \times \mathcal{C}_2 = \langle \sigma \rangle \times \langle \tau \rangle \text{ twisted grading of } \\ \mathcal{A} &= \mathcal{M}_2(\mathbb{C}). \text{ determined by} \\ u_1 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, u_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, u_{\tau} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, u_{\sigma\tau} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \end{split}$$

• For ${\it N}=\langle \tau
angle$ we get a ${\it G}/{\it N}$ -grading determined by

$$\mathcal{A}_{\bar{e}} = \mathsf{span}\{E_{11}, E_{22}\}, \quad \mathcal{A}_{\bar{\sigma}} = \mathsf{span}\{E_{12}, E_{21}\}.$$

 We conclude that this quotient of a twisted grading is an elementary crossed product C₂-grading determined by (ē, σ).

For which groups H of order n, the associated elementary crossed product H-grading of $M_n(\mathbb{C})$ is a quotient grading of a twisted grading $\mathbb{C}^{\alpha}G$ of $M_n(\mathbb{C})$ for some group of central type G of order n^2 and a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$?

Image: A match the second s

For which groups H of order n, the associated elementary crossed product H-grading of $M_n(\mathbb{C})$ is a quotient grading of a twisted grading $\mathbb{C}^{\alpha}G$ of $M_n(\mathbb{C})$ for some group of central type G of order n^2 and a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$?

Remark

Clearly, just by order considerations, in those cases we have $|N| = |H \cong G/N| = \sqrt{|G|}$.

For which groups H of order n, the associated elementary crossed product H-grading of $M_n(\mathbb{C})$ is a quotient grading of a twisted grading $\mathbb{C}^{\alpha}G$ of $M_n(\mathbb{C})$ for some group of central type G of order n^2 and a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$?

Remark

Clearly, just by order considerations, in those cases we have $|N| = |H \cong G/N| = \sqrt{|G|}$.

Liebler, Yellen (1979) and Howlett, Isaacs (1982)

Any group of central type is solvable.

イロン 不同 とくほと 不良 とう

For which groups H of order n, the associated elementary crossed product H-grading of $M_n(\mathbb{C})$ is a quotient grading of a twisted grading $\mathbb{C}^{\alpha}G$ of $M_n(\mathbb{C})$ for some group of central type G of order n^2 and a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$?

Remark

Clearly, just by order considerations, in those cases we have $|N| = |H \cong G/N| = \sqrt{|G|}$.

Liebler, Yellen (1979) and Howlett, Isaacs (1982)

Any group of central type is solvable.

Hence, in the above question a necessary condition for H is to be solvable.

Bahturin, Zaicev (2002) and Năstăsescu, van Oystaeyen (2004)

Any Γ -grading of $M_n(\mathbb{C})$ is graded isomorphic to a graded tensor product $M_t(\mathbb{C}) \otimes \mathbb{C}^{\alpha} G$ where $M_t(\mathbb{C})$ is equipped with an elementary grading, G a subgroup of central type of Γ and α is nondegenerate.

Bahturin, Zaicev (2002) and Năstăsescu, van Oystaeyen (2004)

Any Γ -grading of $M_n(\mathbb{C})$ is graded isomorphic to a graded tensor product $M_t(\mathbb{C}) \otimes \mathbb{C}^{\alpha}G$ where $M_t(\mathbb{C})$ is equipped with an elementary grading, G a subgroup of central type of Γ and α is nondegenerate.

 By the above, in order to understand quotient gradings of M_n(ℂ) it is sufficient to understand quotient gradings of twisted gradings.

< ロ > < 同 > < 三 > < 三 >

Bahturin, Zaicev (2002) and Năstăsescu, van Oystaeyen (2004)

Any Γ -grading of $M_n(\mathbb{C})$ is graded isomorphic to a graded tensor product $M_t(\mathbb{C}) \otimes \mathbb{C}^{\alpha}G$ where $M_t(\mathbb{C})$ is equipped with an elementary grading, G a subgroup of central type of Γ and α is nondegenerate.

- By the above, in order to understand quotient gradings of *M_n*(C) it is sufficient to understand quotient gradings of twisted gradings.
- This is because quotient H/N-grading of elementary H gradings which correspond to a tuple $(h_1, h_2, \ldots, h_n) \in H^n$ is given simply by taking the appropriate elements in the tuple $(\bar{h_1}, \bar{h_2}, \ldots, \bar{h_n}) \in (H/N)^n$.

Quotients of twisted gradings

• Let $\mathbb{C}^{\alpha}G = \mathcal{A} = M_n(\mathbb{C})$ and let $N \triangleleft G$. Then the base algebra of the quotient G/N grading is $\mathcal{A}_{\bar{e}} = \mathbb{C}^{\alpha}N$.

Quotients of twisted gradings

- Let $\mathbb{C}^{\alpha}G = \mathcal{A} = M_n(\mathbb{C})$ and let $N \triangleleft G$. Then the base algebra of the quotient G/N grading is $\mathcal{A}_{\bar{e}} = \mathbb{C}^{\alpha}N$.
- The twisted group algebra C^αG determines a G/N-action on the set Irr(C^αN) of isomorphism types of irreducible C^αN-modules (alternatively, the set Irr(N, α) of irreducible α-projective representations of N).

Quotients of twisted gradings

- Let $\mathbb{C}^{\alpha}G = \mathcal{A} = M_n(\mathbb{C})$ and let $N \triangleleft G$. Then the base algebra of the quotient G/N grading is $\mathcal{A}_{\bar{e}} = \mathbb{C}^{\alpha}N$.
- The twisted group algebra C^αG determines a G/N-action on the set Irr(C^αN) of isomorphism types of irreducible C^αN-modules (alternatively, the set Irr(N, α) of irreducible α-projective representations of N).
- For α ∈ Z²(G, C*) nondegenerate, this action is transitive, and consequently all the irreducible C^αN-modules are of the same dimension.

Quotients of twisted gradings

- Let $\mathbb{C}^{\alpha}G = \mathcal{A} = M_n(\mathbb{C})$ and let $N \triangleleft G$. Then the base algebra of the quotient G/N grading is $\mathcal{A}_{\bar{e}} = \mathbb{C}^{\alpha}N$.
- The twisted group algebra C^αG determines a G/N-action on the set Irr(C^αN) of isomorphism types of irreducible C^αN-modules (alternatively, the set Irr(N, α) of irreducible α-projective representations of N).
- For α ∈ Z²(G, C*) nondegenerate, this action is transitive, and consequently all the irreducible C^αN-modules are of the same dimension.
- For $[M] \in Irr(\mathbb{C}^{\alpha}N)$ let $\mathcal{I}_M = \mathcal{I}_{\mathbb{C}^{\alpha}G}(M) < G/N$ be its stabilizer subgroup (or the *inertia* subgroup) under the G/N-action.

イロン イヨン イヨン

Let $\mathbb{C}^{\alpha}G \cong M_n(\mathbb{C})$, let $N \triangleleft G$ and let $[M] \in Irr(\mathbb{C}^{\alpha}N)$. The G/N quotient grading admits a decomposition as

 $M_t(\mathbb{C})\otimes (\mathbb{C}^{\omega}\mathcal{I}_M),$

where $M_t(\mathbb{C})$ possess an elementary grading and $[\omega] \in H^2(\mathcal{I}_M, \mathbb{C}^*)$ is Mackey's obstruction cohomology class which corresponds to [M].

Let $\mathbb{C}^{\alpha}G \cong M_n(\mathbb{C})$, let $N \triangleleft G$ and let $[M] \in Irr(\mathbb{C}^{\alpha}N)$. The G/N quotient grading admits a decomposition as

 $M_t(\mathbb{C})\otimes (\mathbb{C}^{\omega}\mathcal{I}_M),$

where $M_t(\mathbb{C})$ possess an elementary grading and $[\omega] \in H^2(\mathcal{I}_M, \mathbb{C}^*)$ is Mackey's obstruction cohomology class which corresponds to [M].

Corollary

With the above notation the quotient grading is elementary if and only if \mathcal{I}_M is trivial, that is the action of G/N on $Irr(\mathbb{C}^{\alpha}N)$ is free.

イロン 不同 とうほう 不同 とう

 As stated above, the quotient G/N-grading is elementary if and only if G/N acts freely on Irr(ℂ^αN). In this case, since the action is also transitive, we have |Irr(ℂ^αN)| = |G/N|.

A (1) < A (1) </p>

- As stated above, the quotient G/N-grading is elementary if and only if G/N acts freely on $Irr(\mathbb{C}^{\alpha}N)$. In this case, since the action is also transitive, we have $|Irr(\mathbb{C}^{\alpha}N)| = |G/N|$.
- Consequently, for $|N| = \sqrt{|G|}$, the G/N-grading is elementary (and hence elementary crossed product) if and only if $|\operatorname{Irr}(\mathbb{C}^{\alpha}N)| = |N|$ which happens if and only if N is abelian and the restriction of α to N is trivial (that is N is isotropic with respect to α).

< ロ > < 同 > < 三 > < 三 >

Corollary

Let $\alpha \in Z^2(G, \mathbb{C}^*)$ be nondegenerate and let $N \triangleleft G$. The G/N-quotient grading of $\mathbb{C}^{\alpha}G$ is an elementary crossed product grading if and only if N is isotropic with respect to α and $|N| = \sqrt{|G|}$.

Corollary

Let $\alpha \in Z^2(G, \mathbb{C}^*)$ be nondegenerate and let $N \triangleleft G$. The G/N-quotient grading of $\mathbb{C}^{\alpha}G$ is an elementary crossed product grading if and only if N is isotropic with respect to α and $|N| = \sqrt{|G|}$.

Example

Let $G = C_n \times C_n = \langle \sigma \rangle \times \langle \tau \rangle$, let η_n be an *n*-th primitive root of unity and consider the *G*-twisted grading of $\mathcal{A} = M_n(\mathbb{C})$ which corresponds to $[\alpha] \in H^2(G, \mathbb{C}^*)$ defined by

$$u^i_{\tau} = u_{\tau^i}, \quad u^i_{\sigma} = u_{\sigma^i}, \quad u_{\tau}u_{\sigma} = \eta_n u_{\sigma}u_{\tau}.$$

Now, let $N = \langle \tau \rangle \cong C_n$. Then, the G/N quotient grading is an elementary crossed product grading.

(ロ) (四) (三) (三)

A subgroup L of G which is isotropic with respect to nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $|L| = \sqrt{|G|}$ is called Lagrangian with respect to α .

A subgroup L of G which is isotropic with respect to nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $|L| = \sqrt{|G|}$ is called Lagrangian with respect to α .

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and only if there exists a group of central type G and a normal Lagrangian $L \triangleleft G$ with respect to a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $H \cong G/L$.

A subgroup L of G which is isotropic with respect to nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $|L| = \sqrt{|G|}$ is called Lagrangian with respect to α .

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and only if there exists a group of central type G and a normal Lagrangian $L \triangleleft G$ with respect to a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $H \cong G/L$.

So we have the following characterization of IYB groups.

A subgroup L of G which is isotropic with respect to nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $|L| = \sqrt{|G|}$ is called Lagrangian with respect to α .

Ben david, Ginosar (2009)

A group H is IYB (that is a multiplicative group of a brace) if and only if there exists a group of central type G and a normal Lagrangian $L \triangleleft G$ with respect to a nondegenerate $\alpha \in Z^2(G, \mathbb{C}^*)$ such that $H \cong G/L$.

So we have the following characterization of IYB groups.

Theorem

A group H of order n is IYB if and only if its corresponding elementary crossed-product grading is a quotient of some twisted grading of $M_n(\mathbb{C})$.

Thank you.

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Ð,