The normal complement problem in group algebras

Himanshu Setia (A joint work with Dr. Manju Khan)

June 22, 2023 Groups, Rings and the Yang-Baxter equation 2023 Blankenberge

Indian Institute of Technology Ropar, India

Group algebra

If R is a commutative ring, then RG is an algebra over R and is called group algebra.

• Modular Group Algebra. Let *R* be a commutative ring of characteristic *p*. If the group *G* has an element of order *p*, then *RG* is called modular group algebra.

• Semisimple Group Algebra. Let *R* be a commutative ring of characteristic *p*. If

- *R* is semisimple
- G is finite
- \bigcirc |G| is invertible in R,

then RG is called semisimple group algebra.

¹ H. N. Ward (1960)

For what p-groups G and field F containing p elements, there exists an epimorphism

$$\phi:\mathbb{U}(FG)\to G$$

fixing G. In other words, if there exist a normal subgroup N in $\mathbb{U}(FG),$ such that

$$\mathbb{U}(FG) = N \rtimes G?$$

²R. K. Dennis (1977)

What can be said in an arbitrary group ring RG.

¹H. N. Ward. Some results on the group algebra of a group over a prime field. In *Seminar on finite groups and related topics*, pages 13–19. Harvard University, 1960.

 ² R. Keith Dennis. The structure of the unit group of group rings.
 In *Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975)*, 103–130. Lecture Notes in Pure and Appl. Math., Vol. 26, 1977.

Isomorphism Problem

Whether a group algebra RG determines the group G ? In other words, does

$$RG \cong RH \implies G \cong H?$$

• If $R = \mathbb{Z}$ and G is finite nilpotent group then

$$(NCP) \implies (ISO).$$

• Also, if a normal complement of G in $\mathbb{U}(\mathbb{Z}G)$ is torsion free then

$$(NCP) \implies (ISO).$$

Fuchs' Problem

.

Which groups can be realized as the groups of units of a commutative ring.

• If G has a normal complement N in $\mathbb{U}(RG)$ such that N-1 is an ideal of RG, then

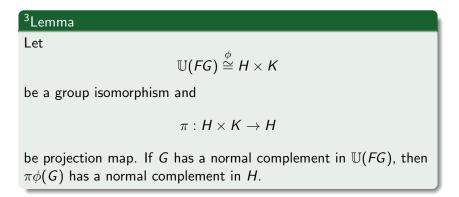
$$G \simeq \mathbb{U}\left(rac{RG}{(N-1)}
ight)$$

Literature Survey

- The finite abelian *p*-groups and finite *p*-groups of exponent *p* with nilpotency class 2 have a normal complement in their corresponding unit groups over the field *F_p*.
 [Moran and Tench, 1977]
- The dihedral groups, semi-dihedral groups and generalized quaternion groups of order 2ⁿ, n ≥ 4 do not have normal complement in their unit groups, over the field containing 2 elements. [Ivory, 1980]
- The existence of a torsion free normal complement of A_4 in $\mathbb{V}(\mathbb{Z}A_4)$ is shown. [Allen and Hobby, 1980]
- A normal complement of S_4 in $\mathbb{V}(\mathbb{Z}S_4)$ is analysed. [Allen and Hobby, 1988]
- Any normal complement of A_4 in $\mathbb{V}(\mathbb{Z}A_4)$ is torsion free. [Allen and Hobby, 1989]

- A normal complement problem for central elementary by abelian *p*-groups over the field *F_p* has been explored.
 [Sandling, 1989]
- The problem is analysed for semisimple group algebras of finite cyclic groups and metacyclic groups of order p₁.p₂.
 [Kaur et al., 2017]
- The problem is investigated for modular group algebras of dihedral groups. [Kaur and Khan, 2019]

Symmetric and Alternating groups



Theorem

Let FS_n denote the group algebra of S_n (*n* is even), over a finite field *F* of characteristic *p*, where p > n. Then S_n does not have normal complement in $\mathbb{U}(FS_n)$.

Theorem

There does not exist normal complement of A_n in $\mathbb{U}(FA_n)$ $(n \ge 4)$, where F is finite field of characteristic p > n.

Theorem

Let FA_4 be the group algebra of A_4 over a finite field F of characteristic 3. Then A_4 does not have normal complement in $\mathbb{U}(FA_4)$.

³H. Setia and M. Khan. The normal complement problem in group algebras. *Communications in Algebra*, 50(1):287–291, 2022.

⁴Theorem

Let F be a finite field of characteristic 2.

- If F contains 2 elements, then $1 + \omega(FA_4)\omega(FK_4)$ is a normal complement to A_4 in $\mathbb{V}(FA_4)$.
- If *F* contains 2^{2k} , $k \in \mathbb{N}$ or 2^{3r} , $r \in \mathbb{N}$ elements, then A_4 does not have a normal complement in $\mathbb{V}(FA_4)$.
 - Class length of elements of $N \setminus 1 + \Gamma(K_4)$ is computed with the help of GAP*.

⁴ H. Setia and M. Khan. Normal complement problem over a finite field of characteristic 2. Communications in Algebra, 1–6, 2022.

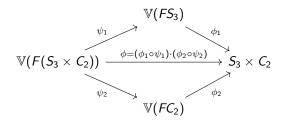
^{*}Himanshu Setia and Manju Khan. GAP-code for calculating conjugacy class length. GitHub repository (2022). https://github.com/HimanSetia/GAP-code-for-calculating-conjugacy-class-length.git.

Field of characteristic 2

Proposition

Let *F* be a finite field of characteristic 2 and D_{4m} be the dihedral group of order 4m, where *m* is an odd integer. Then, D_{4m} does not have a normal complement in $\mathbb{V}(FD_{4m})$, except for m = 3 and |F| = 2.

• $D_{12} = S_3 \times C_2$.



 N is an elementary abelian 2-group of order 2⁶, when m = 3 and |F| = 2.

Field of characteristic 2

•
$$\mathbb{V}(FS_3) = \langle bu \rangle \rtimes S_3$$
, where $u = 1 + (1 + b)a(1 + b)$.

•
$$S_4 = \langle x, y \rangle \rtimes \langle a, b \rangle \cong K_4 \rtimes S_3.$$

Proposition

Let *F* be the field containing 2 elements. Then, normal complement of S_4 in $\mathbb{V}(FS_4)$ is $(1 + \omega(FS_4)\omega(FK_4)) \rtimes \langle bu \rangle$.

- Let $F_q G$ denote a semisimple group algebra and $\phi: \mathcal{U}(F_q G) \to \prod_{i=1}^r GL(n_i, q^{k_i})$ be an isomorphism.
- Let π_i|_{φ(G)} be the restriction map of π_i on φ(G) and K_i the kernel of π_i|_{φ(G)}.

⁵Theorem

If *n* does not divide $(q^{k_i} - 1)|K_i|$ for some *i*, $1 \le i \le r$ then *G* does not have a normal complement in $\mathcal{U}(F_qG)$.

 $^{^{5}}$ H. Setia and M. Khan. A note on the normal complement problem in semisimple group algebras. (under review)

Simple and perfect groups

Corollary

Let G be a non-abelian simple group of order n. For every $i, 1 \le i \le r$ with $n_i > 1$, if n does not divide $q^{k_i} - 1$ then G does not have normal complement in $\mathcal{U}(F_qG)$.

Definition

A group G is said to be perfect if G = G', where G' is the commutator subgroup of G. For example, A_5 , SL(2,5), etc.

If G has a normal complement in U(FG), then G' has a normal complement in U'(FG).

Theorem

Let G be a perfect group of order n. If n does not exceed $|SL(n_i, q^{k_i})|/d_i$ for some i, then G does not have a normal complement in $\mathcal{U}(F_qG)$. Here $d_i = \gcd(n_i, q^{k_i} - 1)$.

Corollary

SL(2,5) does not have a normal complement in $U(F_qSL(2,5))$ for q > 5.

•
$$120 < \frac{|SL(6,q)|}{6} < \frac{|SL(6,q)|}{\gcd(6,q-1)}.$$

Theorem

If q > 3 and n divides $1 + q^u$ for some integer $u \ge 1$, then D_{2n} does not have normal complement in $\mathbb{U}(F_q D_{2n})$.

Theorem

If 2n divides $1 + q^u$ for some integer $u \ge 1$, then Q_{4n} does not have normal complement in $\mathbb{U}(F_q Q_{4n})$.

Let G be a non-abelian group of order p^3 for an odd prime p such that gcd(p,q) = 1. It is known that

$$F_q G \cong F_q \bigoplus F_{q^f}^{((1+p)e)} \bigoplus M_p(F_{q^f})^{(e)},$$

where f denotes the order of q modulo p and $e = \frac{p-1}{f}$.

Theorem

If p^3 does not divide $q^f - 1$, then G does not have a normal complement in $\mathbb{U}(F_qG)$.

Allen, P. J. and Hobby, C. (1980).
A characterization of units in V(ZA₄).
Journal of Algebra, 66(2):534–543.

- Allen, P. J. and Hobby, C. (1988).
 A characterization of units in V(ZS₄).
 Communications in Algebra, 16(7):1479–1505.
- Allen, P. J. and Hobby, C. (1989).
 Elements of finite order in V(ZA₄).
 Pacific Journal of Mathematics, 138(1):1 8.

lvory, L. R. (1980).

A note on normal complements in mod p envelopes. *Proc. Amer. Math. Soc.*, 79(1):9–12.

Kaur, K., Khan, M., and Chatterjee, T. (2017).
 A note on normal complement problem.
 J. Algebra Appl., 16(1):1750011, 11.

Kaur, S. and Khan, M. (2019).

A note on normal complement problem for split metacyclic groups.

Communications in Algebra, 47(9):3842-3848.

Kaur, S. and Khan, M. (2020). The normal complement problem and the structure of the unitary subgroup.

Communications in Algebra, 48(8):3628–3636.

- Moran, L. E. and Tench, R. N. (1977). Normal complements in mod *p*-envelopes. Israel J. Math., 27(3-4):331–338.
- Sandling, R. (1989).

The modular group algebra of a central-elementary-by-abelianp-group. *Archiv der Mathematik*, 52(1):22–27.

Thank You for attending and listening to my presentation.