A family of set-theoretical solutions of the Yang-Baxter equation associated to a skew brace

Paola Stefanelli

Joint work with Marzia Mazzotta and Bernard Rybołowicz

Groups, Rings and the Yang-Baxter equation 2023

Blankenberge, 19-23 June

is said to be a *set-theoretical solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a, \rho_b : B \to B$ and write r as

 $r(a,b) = (\lambda_a(b), \rho_b(a)),$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

is said to be a *set-theoretical solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a, \rho_b : B \to B$ and write r as

$$r(a, b) = (\lambda_a(b), \rho_b(a)),$$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

is said to be a *set-theoretical solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a, \rho_b : B \to B$ and write r as

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

is said to be a *set-theoretical solution*, or briefly *solution*, of the YBE.

If we consider two maps $\lambda_a, \rho_b : B \to B$ and write r as

$$r(a,b) = (\lambda_a(b), \rho_b(a)),$$

- ▶ *left non-degenerate* if λ_a is bijective, for every $a \in B$;
- ▶ *right non-degenerate* if ρ_b is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

Some solutions on groups

Theorem (Lu, Yan, Zhu - 2000)

Let G be a group, $\lambda, \rho : G \to \text{Sym}_G$ maps and set $\lambda_a(b) := \lambda(a)(b)$ and $\rho_b(a) := \rho(b)(a)$. If $\lambda, \rho : G \to \text{Sym}_G$ are a left action and a right action of G on itself, respectively, and

$$\forall a, b \in G \quad a b = \lambda_a(b) \rho_b(a),$$

then the map $r: G \times G \rightarrow G \times G$ defined by

$$r(a,b) = (\lambda_a(b), \rho_b(a))$$

is a non-degenerate bijective solution on G.

Venkov solutions

If G is a group and, for all $a, b \in G$, set $\lambda_a = id_G$ and $\rho_b(a) = b^{-1}ab$, then λ and ρ satisfy Lu, Yan, Zhu conditions on G and the map $r : G \times G \to G \times G$ defined by

$$r(a,b) = (b, b^{-1}ab)$$

is a non-degenerate bijective solution on G.

Some solutions on groups

Theorem (Lu, Yan, Zhu - 2000)

Let G be a group, $\lambda, \rho : G \to \text{Sym}_G$ maps and set $\lambda_a(b) := \lambda(a)(b)$ and $\rho_b(a) := \rho(b)(a)$. If $\lambda, \rho : G \to \text{Sym}_G$ are a left action and a right action of G on itself, respectively, and

$$\forall a, b \in G \quad a b = \lambda_a(b) \rho_b(a),$$

then the map $r: G \times G \rightarrow G \times G$ defined by

$$r(a,b) = (\lambda_a(b), \rho_b(a))$$

is a non-degenerate bijective solution on G.

Venkov solutions

If G is a group and, for all $a, b \in G$, set $\lambda_a = id_G$ and $\rho_b(a) = b^{-1}ab$, then λ and ρ satisfy *Lu*, *Yan*, *Zhu conditions* on G and the map $r : G \times G \to G \times G$ defined by

$$r(a,b) = (b, b^{-1}ab)$$

is a non-degenerate bijective solution on G.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

Any Jacobson radical ring $(B, +, \cdot)$ determines a solution r on B that is the map $r: B \times B \to B \times B$ defined by

$$r(a,b) := \left(\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a)\right)$$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive, i.e., $r^2 = id_{B \times B}$.

More generally, non-degenerate involutive solutions are strictly related to the structure of *braces*. Even more generally, non-degenerate bijective solutions can be obtained through *skew braces*.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

Any Jacobson radical ring $(B, +, \cdot)$ determines a solution r on B that is the map $r: B \times B \to B \times B$ defined by

$$r(a,b) := \left(\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a)\right)$$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive, i.e., $r^2 = id_{B \times B}$.

More generally, non-degenerate involutive solutions are strictly related to the structure of *braces*. Even more generally, non-degenerate bijective solutions can be obtained through *skew braces*.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

Any Jacobson radical ring $(B, +, \cdot)$ determines a solution r on B that is the map $r: B \times B \to B \times B$ defined by

$$r(a,b) := \left(\lambda_a(b), \lambda_{\lambda_a(b)}^{-1}(a)\right)$$

where $\lambda_a(b) := a \cdot b + b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive, i.e., $r^2 = id_{B \times B}$.

More generally, non-degenerate involutive solutions are strictly related to the structure of *braces*. Even more generally, non-degenerate bijective solutions can be obtained through *skew braces*.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)

A triple $(B, +, \circ)$ is a *skew left brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *left brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +)^{op}$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a left brace with ∘ is the adjoint operation, where a ∘ b := a + b + a · b, for all a, b ∈ B.
- Any commutative left brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a left brace such that ∘ is commutative, then (B, +, ∘) is Jacobson radical ring where a ∘ b := a ∘ b − a − b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)

A triple $(B, +, \circ)$ is a *skew left brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *left brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +^{op})$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a left brace with ∘ is the adjoint operation, where a ∘ b := a + b + a · b, for all a, b ∈ B.
- Any commutative left brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a left brace such that ∘ is commutative, then (B, +, ∘) is Jacobson radical ring where a ∘ b := a ∘ b − a − b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)

A triple $(B, +, \circ)$ is a *skew left brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *left brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +^{op})$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a left brace with ∘ is the adjoint operation, where a ∘ b := a + b + a · b, for all a, b ∈ B.
- Any commutative left brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a left brace such that ∘ is commutative, then (B, +, ∘) is Jacobson radical ring where a ∘ b := a ∘ b − a − b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)

A triple $(B, +, \circ)$ is a *skew left brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *left brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +)^{op}$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if (B, +, ·) is a Jacobson radical ring, then (B, +, ∘) is a left brace with ∘ is the adjoint operation, where a ∘ b := a + b + a · b, for all a, b ∈ B.
- Any commutative left brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a left brace such that ∘ is commutative, then (B, +, ∘) is Jacobson radical ring where a ∘ b := a ∘ b − a − b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)

A triple $(B, +, \circ)$ is a *skew left brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *left brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +)^{op}$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if (B,+, ·) is a Jacobson radical ring, then (B, +, ∘) is a left brace with ∘ is the adjoint operation, where a ∘ b := a + b + a · b, for all a, b ∈ B.
- Any commutative left brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a left brace such that ∘ is commutative, then (B, +, ∘) is Jacobson radical ring where a ∘ b := a ∘ b − a − b, for all a, b ∈ B.

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)

A triple $(B, +, \circ)$ is a *skew left brace* if (B, +) and (B, \circ) are groups and

$$a \circ (b + c) = a \circ b - a + a \circ c$$

holds, for all $a, b, c \in B$. If (B, +) is abelian then B is a *left brace*.

- If (B, +) is a group, then (B, +, +) and $(B, +, +)^{op}$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if (B,+, ·) is a Jacobson radical ring, then (B, +, ∘) is a left brace with ∘ is the adjoint operation, where a ∘ b := a + b + a b, for all a, b ∈ B.
- Any commutative left brace is a Jacobson radical ring. Indeed, if (B, +, ∘) is a left brace such that ∘ is commutative, then (B, +, ∘) is Jacobson radical ring where **a** ∘ **b** := **a** ∘ **b** − **a** − **b**, for all a, b ∈ B.

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017) If $(B, +, \circ)$ is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

 $r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

▶ r_B is involutive $\iff (B, +, \circ)$ is a brace.

Set, for all $a, b \in B$,

 $\lambda_a(b) := -a + a \circ b$ and $\rho_b(a) := (-a + a \circ b)^- \circ a \circ b$,

and consider $\lambda : B \to \text{Sym}_B, a \mapsto \lambda_a$ and $\rho : B \to \text{Sym}_B, a \mapsto \rho_b$. Then, λ and ρ satisfy *Lu*, *Yan*, *Zhu conditions* on (B, \circ) since λ and ρ determine a left action and a right action of (B, \circ) on itself, respectively, and

$$a \circ b = \lambda_a(b) \circ \rho_b(a).$$

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017) If $(B, +, \circ)$ is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

- ▶ r_B is involutive $\iff (B, +, \circ)$ is a brace.
- Set, for all $a, b \in B$,

 $\lambda_a(b) := -a + a \circ b \quad \text{and} \quad \rho_b(a) := (-a + a \circ b)^- \circ a \circ b,$

and consider $\lambda : B \to \text{Sym}_B, a \mapsto \lambda_a$ and $\rho : B \to \text{Sym}_B, a \mapsto \rho_b$. Then, λ and ρ satisfy *Lu*, *Yan*, *Zhu conditions* on (B, \circ) since λ and ρ determine a left action and a right action of (B, \circ) on itself, respectively, and

$$a \circ b = \lambda_a(b) \circ \rho_b(a).$$

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017) If $(B, +, \circ)$ is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

- ▶ r_B is involutive $\iff (B, +, \circ)$ is a brace.
- ▶ Set, for all $a, b \in B$,

$$\lambda_{a}\left(b
ight):=-a+a\circ b \quad ext{and} \quad
ho_{b}\left(a
ight):=\left(-a+a\circ b
ight)^{-}\circ a\circ b,$$

and consider $\lambda : B \to \text{Sym}_B, a \mapsto \lambda_a$ and $\rho : B \to \text{Sym}_B, a \mapsto \rho_b$. Then, λ and ρ satisfy *Lu*, *Yan*, *Zhu* conditions on (B, \circ) since λ and ρ determine a left action and a right action of (B, \circ) on itself, respectively, and

$$a \circ b = \lambda_a(b) \circ \rho_b(a).$$

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017) If $(B, +, \circ)$ is a skew brace, then the map $r_B : B \times B \to B \times B$ defined by

$$r_B(a, b) := (-a + a \circ b, (-a + a \circ b)^- \circ a \circ b)$$

is a non-degenerate bijective solution (with a^- the inverse of a with respect to \circ , for every $a \in B$).

- ▶ r_B is involutive $\iff (B, +, \circ)$ is a brace.
- ▶ Set, for all $a, b \in B$,

$$\lambda_{a}\left(b
ight):=-a+a\circ b \quad ext{and} \quad
ho_{b}\left(a
ight):=\left(-a+a\circ b
ight)^{-}\circ a\circ b,$$

and consider $\lambda : B \to \text{Sym}_B, a \mapsto \lambda_a$ and $\rho : B \to \text{Sym}_B, a \mapsto \rho_b$. Then, λ and ρ satisfy *Lu*, *Yan*, *Zhu* conditions on (B, \circ) since λ and ρ determine a left action and a right action of (B, \circ) on itself, respectively, and

$$a \circ b = \lambda_a(b) \circ \rho_b(a)$$

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_B by certain parameters.

Let $(B, +, \circ)$ be a skew left brace and $z \in B$ such that the identity

 $(a-b+c)\circ z = a\circ z - b\circ z + c\circ z \tag{(*)}$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_z : B \times B \to B \times B$ given by

 $\check{r}_z(a,b)=ig(a\circ b-a\circ z+z,\ (a\circ b-a\circ z+z)^-\circ a\circ big),$

is a non-degenerate and bijective solution, called *deformed solution by z on B*. Under the above assumption (*), the map r_z also is

$$r_z(a,b) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$$

a non-degenerate and bijective solution.

In particular,
$$\check{r}_z^{-1} = r_{z^-}$$
. Clearly, $r_0 = r_B$ and $\check{r}_0 = r_B^{-1}$.

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_B by certain parameters.

Let $(B, +, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$(a-b+c)\circ z = a\circ z - b\circ z + c\circ z \tag{(*)}$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_z : B \times B \to B \times B$ given by

$$\check{r}_z(a,b)=ig(a\circ b-a\circ z+z,\ (a\circ b-a\circ z+z)^-\circ a\circ big),$$

is a non-degenerate and bijective solution, called *deformed solution by z on B*. Under the above assumption (*), the map r_z also is

$$r_z(a,b) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$$

a non-degenerate and bijective solution.

In particular,
$$\check{r}_z^{-1} = r_{z^-}$$
. Clearly, $r_0 = r_B$ and $\check{r}_0 = r_B^{-1}$.

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_B by certain parameters.

Let $(B, +, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$(a-b+c)\circ z = a\circ z - b\circ z + c\circ z \tag{(*)}$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_z : B \times B \to B \times B$ given by

$$\check{r}_z(a,b)=ig(a\circ b-a\circ z+z,\ (a\circ b-a\circ z+z)^-\circ a\circ big),$$

is a non-degenerate and bijective solution, called *deformed solution by z on B*. Under the above assumption (*), the map r_z also is

$$r_z(a,b) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$$

a non-degenerate and bijective solution.

In particular,
$$\check{r}_z^{-1} = r_{z^-}$$
. Clearly, $r_0 = r_B$ and $\check{r}_0 = r_B^{-1}$.

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_B by certain parameters.

Let $(B, +, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$(a-b+c)\circ z = a\circ z - b\circ z + c\circ z \tag{(*)}$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_z : B \times B \to B \times B$ given by

$$\check{r}_z(a,b)=ig(a\circ b-a\circ z+z,\ (a\circ b-a\circ z+z)^-\circ a\circ big),$$

is a non-degenerate and bijective solution, called *deformed solution by z on B*. Under the above assumption (*), the map r_z also is

$$r_z(a,b) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$$

a non-degenerate and bijective solution.

In particular,
$$\check{r}_z^{-1} = r_{z^-}$$
. Clearly, $r_0 = r_B$ and $\check{r}_0 = r_B^{-1}$.

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_B by certain parameters.

Let $(B, +, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$(a-b+c)\circ z = a\circ z - b\circ z + c\circ z \tag{(*)}$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_z : B \times B \to B \times B$ given by

$$\check{r}_z(a,b)=ig(a\circ b-a\circ z+z,\ (a\circ b-a\circ z+z)^-\circ a\circ big),$$

is a non-degenerate and bijective solution, called *deformed solution by z on B*. Under the above assumption (*), the map r_z also is

$$r_z(a,b) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$$

a non-degenerate and bijective solution.

In particular,
$$\check{r}_z^{-1} = r_{z^-}$$
. Clearly, $r_0 = r_B$ and $\check{r}_0 = r_B^{-1}$.

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_B by certain parameters.

Let $(B, +, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$(a-b+c)\circ z = a\circ z - b\circ z + c\circ z \tag{(*)}$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_z : B \times B \to B \times B$ given by

$$\check{r}_z(a,b)=ig(a\circ b-a\circ z+z,\ (a\circ b-a\circ z+z)^-\circ a\circ big),$$

is a non-degenerate and bijective solution, called *deformed solution by z on B*. Under the above assumption (*), the map r_z also is

$$r_z(a,b) = (-a \circ z + a \circ b \circ z, (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$$

a non-degenerate and bijective solution.

In particular,
$$\check{r}_z^{-1} = r_{z^-}$$
. Clearly, $r_0 = r_B$ and $\check{r}_0 = r_B^{-1}$.

If $(B,+,\circ)$ is a skew left brace, hereinafter the focus will be on the map

 $r_z(a,b) = (-a \circ z + a \circ b \circ z, \ (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$

and, for all $a, b \in B$, we fix the following notation:

 $\sigma^z_a(b) := -a \circ z + a \circ b \circ z \quad \text{and} \quad \tau^z_b(a) := (-a \circ z + a \circ b \circ z)^- \circ a \circ b.$

If $z \in B$ gives rise to a deformed solution r_z , then the following hold:

•
$$\forall a, b \in B$$
 $a \circ b = \sigma_a^z(b) \circ \tau_b^z(a).$

- the map $\tau^z : (B, \circ) \to \operatorname{Sym}_B, b \mapsto \tau_b^z$ is a group anti-homomorphism.
- Considered the map $\sigma^z : (B, \circ) \to \operatorname{Sym}_B, a \mapsto \sigma^z_a$, it holds that

 σ^z is a homomorphism $\iff \forall a \in B \quad a \circ z = z + a$

If $(B,+,\circ)$ is a skew left brace, hereinafter the focus will be on the map

 $r_z(a,b) = (-a \circ z + a \circ b \circ z, \ (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$

and, for all $a, b \in B$, we fix the following notation:

 $\sigma_a^z(b) := -a \circ z + a \circ b \circ z \quad \text{and} \quad \tau_b^z(a) := (-a \circ z + a \circ b \circ z)^- \circ a \circ b.$

If $z \in B$ gives rise to a deformed solution r_z , then the following hold:

•
$$\forall a, b \in B$$
 $a \circ b = \sigma_a^z(b) \circ \tau_b^z(a)$.

- the map $\tau^z : (B, \circ) \to \operatorname{Sym}_B, b \mapsto \tau_b^z$ is a group anti-homomorphism.
- Considered the map $\sigma^z : (B, \circ) \to \operatorname{Sym}_B, a \mapsto \sigma^z_a$, it holds that

 σ^z is a homomorphism $\iff \forall a \in B \quad a \circ z = z + a$

If $(B,+,\circ)$ is a skew left brace, hereinafter the focus will be on the map

 $r_z(a,b) = (-a \circ z + a \circ b \circ z, \ (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$

and, for all $a, b \in B$, we fix the following notation:

 $\sigma_a^z(b) := -a \circ z + a \circ b \circ z \quad \text{and} \quad \tau_b^z(a) := (-a \circ z + a \circ b \circ z)^- \circ a \circ b.$

If $z \in B$ gives rise to a deformed solution r_z , then the following hold:

•
$$\forall a, b \in B$$
 $a \circ b = \sigma_a^z(b) \circ \tau_b^z(a)$.

• the map $\tau^z : (B, \circ) \to \operatorname{Sym}_B, b \mapsto \tau_b^z$ is a group anti-homomorphism.

• Considered the map $\sigma^z : (B, \circ) \to \operatorname{Sym}_B, a \mapsto \sigma^z_a$, it holds that

 σ^z is a homomorphism $\iff orall a \in B$ $a \circ z = z + a$

If $(B,+,\circ)$ is a skew left brace, hereinafter the focus will be on the map

 $r_z(a,b) = (-a \circ z + a \circ b \circ z, \ (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$

and, for all $a, b \in B$, we fix the following notation:

 $\sigma_a^z(b) := -a \circ z + a \circ b \circ z \quad \text{and} \quad \tau_b^z(a) := (-a \circ z + a \circ b \circ z)^- \circ a \circ b.$

If $z \in B$ gives rise to a deformed solution r_z , then the following hold:

- $\forall a, b \in B$ $a \circ b = \sigma_a^z(b) \circ \tau_b^z(a)$.
- the map $\tau^z : (B, \circ) \to \operatorname{Sym}_B, b \mapsto \tau_b^z$ is a group anti-homomorphism.
- Considered the map $\sigma^z: (B, \circ) \to \operatorname{Sym}_B, a \mapsto \sigma^z_a$, it holds that

 σ^z is a homomorphism $\iff \forall a \in B \quad a \circ z = z + a$

If $(B,+,\circ)$ is a skew left brace, hereinafter the focus will be on the map

 $r_z(a,b) = (-a \circ z + a \circ b \circ z, \ (-a \circ z + a \circ b \circ z)^- \circ a \circ b)$

and, for all $a, b \in B$, we fix the following notation:

 $\sigma_a^z(b) := -a \circ z + a \circ b \circ z \quad \text{and} \quad \tau_b^z(a) := (-a \circ z + a \circ b \circ z)^- \circ a \circ b.$

If $z \in B$ gives rise to a deformed solution r_z , then the following hold:

- $\forall a, b \in B$ $a \circ b = \sigma_a^z(b) \circ \tau_b^z(a)$.
- the map $\tau^z : (B, \circ) \to \operatorname{Sym}_B, b \mapsto \tau^z_b$ is a group anti-homomorphism.
- Considered the map $\sigma^z: (B, \circ) \to \operatorname{Sym}_B, a \mapsto \sigma^z_a$, it holds that

 σ^z is a homomorphism $\iff \forall a \in B \quad a \circ z = z + a$

Question: What elements z in a skew left brace B ensure that r_z is a solution?

Definition (MRS - 2023)

Let $(B, +, \circ)$ be a skew left brace. Then, we call the set

 $\mathcal{D}_r(B) = \{ z \in B \mid \forall a, b \in B \mid (a+b) \circ z = a \circ z - z + b \circ z \},\$

the *right distributor* of *B*.

Clearly, $0 \in \mathcal{D}_r(B)$.

Question: What elements z in a skew left brace B ensure that r_z is a solution?

Definition (MRS - 2023) Let $(B, +, \circ)$ be a skew left brace. Then, we call the set $\mathcal{D}_r(B) = \{z \in B \mid \forall a, b \in B \ (a+b) \circ z = a \circ z - z + b \circ z\},$ the *right distributor* of *B*.

Clearly, $0 \in \mathcal{D}_r(B)$.

Question: What elements z in a skew left brace B ensure that r_z is a solution?

Definition (MRS - 2023) Let $(B, +, \circ)$ be a skew left brace. Then, we call the set $\mathcal{D}_r(B) = \{z \in B \mid \forall a, b \in B \ (a+b) \circ z = a \circ z - z + b \circ z\},$ the *right distributor* of *B*.

Clearly, $0 \in \mathcal{D}_r(B)$.

Question: What elements z in a skew left brace B ensure that r_z is a solution?

Definition (MRS - 2023) Let $(B, +, \circ)$ be a skew left brace. Then, we call the set $\mathcal{D}_r(B) = \{z \in B \mid \forall a, b \in B \ (a+b) \circ z = a \circ z - z + b \circ z\},$ the *right distributor* of *B*.

Clearly, $0 \in \mathcal{D}_r(B)$.

A characterization

Theorem (MRS - 2023)

If $(B, +, \circ)$ is a skew left brace and $z \in B$, then

 r_{z} is a solution $\iff z \in \mathcal{D}_{r}(B)$.

Any element z in a two-sided skew left brace B determine a solution r_z .

A characterization

Theorem (MRS - 2023)

If $(B, +, \circ)$ is a skew left brace and $z \in B$, then

 r_{z} is a solution $\iff z \in \mathcal{D}_{r}(B)$.

Any element z in a two-sided skew left brace B determine a solution r_z .

Some examples

The other limit case is when there exists only the trivial deformation, namely, $\mathcal{D}_r(B) = \{0\}.$

Example 1

Let $B := (\mathbb{Z}, +, \circ)$ be the left brace on $(\mathbb{Z}, +)$ with $a \circ b = a + (-1)^a b$, for all $a, b \in \mathbb{Z}$ (cf. [Rump - 2007]). Then, $\mathcal{D}_r(B) = \{0\}$.

The following is an example of a skew left brace in which $\mathcal{D}_r(B)$ is not trivial.

Example 2

Let *B* be the left brace in Example 1 and $U_9 := (U(\mathbb{Z}/2^9\mathbb{Z}), +_1, \circ)$ the left brace where

$$orall a,b\in U(\mathbb{Z}/2^9\mathbb{Z}) \quad a+_1b=a-1+b \quad ext{and} \quad a\circ b=ab,$$

with + and \cdot the usual operations in the ring modulo 2°. Then, $U_9\times B$ is a left brace such that

$$\mathcal{D}_r(U_9\times B)=U_9\times\{0\}.$$

Some examples

The other limit case is when there exists only the trivial deformation, namely, $\mathcal{D}_r(B) = \{0\}.$

Example 1

Let $B := (\mathbb{Z}, +, \circ)$ be the left brace on $(\mathbb{Z}, +)$ with $a \circ b = a + (-1)^a b$, for all $a, b \in \mathbb{Z}$ (cf. [Rump - 2007]). Then, $\mathcal{D}_r(B) = \{0\}$.

The following is an example of a skew left brace in which $\mathcal{D}_r(B)$ is not trivial.

Example 2

Let B be the left brace in Example 1 and $U_9 := (U(\mathbb{Z}/2^9\mathbb{Z}), +_1, \circ)$ the left brace where

$$\forall a, b \in U(\mathbb{Z}/2^9\mathbb{Z}) \quad a +_1 b = a - 1 + b \quad \text{and} \quad a \circ b = ab,$$

with + and \cdot the usual operations in the ring modulo 29. Then, $\textit{U}_9 \times \textit{B}$ is a left brace such that

$$\mathcal{D}_r(U_9\times B)=U_9\times\{0\}.$$

Let $(B, +, \circ)$ be a skew left brace.

 $Z(B,\circ) \leq (\mathcal{D}_r(B),\circ) \leq (B,\circ)$

In general, $(\mathcal{D}_r(B), +) \not\leq (B, +)$, unless we get into particular cases.

- Fix $(B) \subseteq \mathcal{D}_r(B)$, where Fix $(B) = \{a \in B \mid \forall x \in B \ \lambda_x(a) = a\}$.
- Ann $(B) \subseteq \mathcal{D}_r(B)$, where Ann $(B) = \operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B) = \{a \in B \mid \forall b \in B \mid a+b = a \circ b \land a+b = b+a\}.$

Let $(B, +, \circ)$ be a skew left brace.

 $Z(B,\circ) \leq (\mathcal{D}_r(B),\circ) \leq (B,\circ)$

In general, $(\mathcal{D}_r(B), +) \not\leq (B, +)$, unless we get into particular cases.

- Fix $(B) \subseteq \mathcal{D}_r(B)$, where Fix $(B) = \{a \in B \mid \forall x \in B \ \lambda_x(a) = a\}$.
- Ann $(B) \subseteq \mathcal{D}_r(B)$, where Ann $(B) = \operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B) = \{a \in B \mid \forall b \in B \mid a+b = a \circ b \land a+b = b+a\}.$

Let $(B, +, \circ)$ be a skew left brace.

 $Z(B,\circ) \leq (\mathcal{D}_r(B),\circ) \leq (B,\circ)$

In general, $(\mathcal{D}_r(B), +) \not\leq (B, +)$, unless we get into particular cases.

- Fix $(B) \subseteq \mathcal{D}_r(B)$, where Fix $(B) = \{a \in B \mid \forall x \in B \ \lambda_x(a) = a\}$.
- Ann $(B) \subseteq \mathcal{D}_r(B)$, where Ann $(B) = \operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B) = \{a \in B \mid \forall b \in B \mid a+b = a \circ b \land a+b = b+a\}.$

Let $(B, +, \circ)$ be a skew left brace.

 $Z(B,\circ) \leq (\mathcal{D}_r(B),\circ) \leq (B,\circ)$

In general, $(\mathcal{D}_r(B), +) \not\leq (B, +)$, unless we get into particular cases.

If $(B, +, \circ)$ is a left brace, then $\mathcal{D}_r(B)$ is a two-sided subbrace of B.

• Fix $(B) \subseteq \mathcal{D}_r(B)$, where Fix $(B) = \{a \in B \mid \forall x \in B \ \lambda_x (a) = a\}$.

• Ann $(B) \subseteq \mathcal{D}_r(B)$, where Ann $(B) = \operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B) = \{a \in B \mid \forall b \in B \mid a+b = a \circ b \land a+b = b+a\}.$

Let $(B, +, \circ)$ be a skew left brace.

 $Z(B,\circ) \leq (\mathcal{D}_r(B),\circ) \leq (B,\circ)$

In general, $(\mathcal{D}_r(B), +) \not\leq (B, +)$, unless we get into particular cases.

If $(B, +, \circ)$ is a left brace, then $\mathcal{D}_r(B)$ is a two-sided subbrace of B.

• Fix $(B) \subseteq \mathcal{D}_r(B)$, where Fix $(B) = \{a \in B \mid \forall x \in B \ \lambda_x(a) = a\}$.

• Ann $(B) \subseteq \mathcal{D}_r(B)$, where Ann $(B) = \operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B) = \{a \in B \mid \forall b \in B \mid a+b = a \circ b \land a+b = b+a\}$.

Let $(B, +, \circ)$ be a skew left brace.

 $Z(B,\circ) \leq (\mathcal{D}_r(B),\circ) \leq (B,\circ)$

In general, $(\mathcal{D}_r(B), +) \not\leq (B, +)$, unless we get into particular cases.

- Fix $(B) \subseteq \mathcal{D}_r(B)$, where Fix $(B) = \{a \in B \mid \forall x \in B \ \lambda_x(a) = a\}$.
- Ann $(B) \subseteq \mathcal{D}_r(B)$, where Ann $(B) = \operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B) = \{a \in B \mid \forall b \in B \mid a+b = a \circ b \land a+b = b+a\}.$

Is $\mathcal{D}_r(B)$ an ideal of *B*?

It becomes natural to wonder when $\mathcal{D}_r(B)$ is an ideal of a skew left brace $(B, +, \circ)$.

Let us recall that a subset I of B is an *ideal* of B if it is both a normal subgroup of (B, +) and (B, \circ) and I is λ -*invariant*, namely $\lambda_a(I) \subseteq I$, for every $a \in B$.

Example

Let $U_9 \times B$ the left brace seen before. Then, the right distributor $\mathcal{D}_r(U_9 \times B)$ is an ideal of $U_9 \times B$.

Is $\mathcal{D}_r(B)$ an ideal of *B*?

It becomes natural to wonder when $\mathcal{D}_r(B)$ is an ideal of a skew left brace $(B, +, \circ)$.

Let us recall that a subset I of B is an *ideal* of B if it is both a normal subgroup of (B, +) and (B, \circ) and I is λ -*invariant*, namely $\lambda_a(I) \subseteq I$, for every $a \in B$.

Example

Let $U_9 \times B$ the left brace seen before. Then, the right distributor $\mathcal{D}_r(U_9 \times B)$ is an ideal of $U_9 \times B$.

Is $\mathcal{D}_r(B)$ an ideal of *B*?

It becomes natural to wonder when $D_r(B)$ is an ideal of a skew left brace $(B, +, \circ)$.

Let us recall that a subset I of B is an *ideal* of B if it is both a normal subgroup of (B, +) and (B, \circ) and I is λ -*invariant*, namely $\lambda_a(I) \subseteq I$, for every $a \in B$.

Example

Let $U_9 \times B$ the left brace seen before. Then, the right distributor $\mathcal{D}_r(U_9 \times B)$ is an ideal of $U_9 \times B$.

Important remark on deformed solutions

Left braces may determine non-involutive solutions.

Example [Doikou, Rybołowicz - 2022]

Consider Odd := $\left\{ \frac{2n+1}{2k+1} \mid n, k \in \mathbb{Z} \right\}$ and the structure of brace (Odd, $+_1, \circ$) where the binary operation $+_1$ and \circ are given by

$$\forall a, b \in \text{Odd}$$
 $a + b := a - 1 + b$ and $a \circ b := a \cdot b$

with +, + are the usual addition and the multiplication of rational numbers, respectively. Then, for every $z \neq 1$, the solution r_z is not involutive.

Important remark on deformed solutions

Left braces may determine non-involutive solutions.

Example [Doikou, Rybołowicz - 2022]

Consider Odd := $\left\{ \frac{2n+1}{2k+1} \mid n, k \in \mathbb{Z} \right\}$ and the structure of brace (Odd, $+_1, \circ$) where the binary operation $+_1$ and \circ are given by

 $\forall a, b \in \mathsf{Odd}$ $a +_1 b := a - 1 + b$ and $a \circ b := a \cdot b$

with +, \cdot are the usual addition and the multiplication of rational numbers, respectively. Then, for every $z \neq 1$, the solution r_2 is not involutive.

Important remark on deformed solutions

Left braces may determine non-involutive solutions.

Example [Doikou, Rybołowicz - 2022]

 $\begin{array}{l} \text{Consider Odd} := \left\{ \frac{2n+1}{2k+1} \ \big| \ n, k \in \mathbb{Z} \right\} \text{ and the structure of brace (Odd, +1, \circ)} \\ \text{where the binary operation } +_1 \text{ and } \circ \text{ are given by} \end{array}$

 $\forall a, b \in \mathsf{Odd}$ $a +_1 b := a - 1 + b$ and $a \circ b := a \cdot b$

with +, \cdot are the usual addition and the multiplication of rational numbers, respectively. Then, for every $z \neq 1$, the solution r_z is not involutive.

Equivalent or not equivalent solutions?

Question: Let $(B, +, \circ)$ be a skew left brace. For which parameters $z, w \in B$, are the deformed solutions r_z and r_w equivalent?

[Etingof, Schedler, Soloviev - 1999]: Two solutions r and s on two sets X and Y, respectively, are said to be *equivalent* if there exists a bijective map $\varphi: X \to Y$ such that

$$(\varphi \times \varphi) \mathbf{r} = \mathbf{s} (\varphi \times \varphi),$$

namely, the diagram

is commutative.

Equivalent or not equivalent solutions?

Question: Let $(B, +, \circ)$ be a skew left brace. For which parameters $z, w \in B$, are the deformed solutions r_z and r_w equivalent?

[Etingof, Schedler, Soloviev - 1999]: Two solutions r and s on two sets X and Y, respectively, are said to be *equivalent* if there exists a bijective map $\varphi : X \to Y$ such that

$$(\varphi \times \varphi) \mathbf{r} = \mathbf{s} (\varphi \times \varphi),$$

namely, the diagram

$$\begin{array}{c|c} X \times X \xrightarrow{r \times r} X \times X \\ \varphi \times \varphi \\ \varphi \\ Y \times Y \xrightarrow{s \times s} Y \times Y \end{array}$$

is commutative.

If r_z and r_w are two deformed solutions and $\varphi \in \operatorname{Aut}(B, +, \circ)$ such that $\varphi(z) = w$, then r_z and r_w are trivially equivalent via φ .

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.

If r_z and r_w are two deformed solutions and $\varphi \in \operatorname{Aut}(B, +, \circ)$ such that $\varphi(z) = w$, then r_z and r_w are trivially equivalent via φ .

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.

If r_z and r_w are two deformed solutions and $\varphi \in Aut(B, +, \circ)$ such that $\varphi(z) = w$, then r_z and r_w are trivially equivalent via φ .

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.

If r_z and r_w are two deformed solutions and $\varphi \in \operatorname{Aut}(B, +, \circ)$ such that $\varphi(z) = w$, then r_z and r_w are trivially equivalent via φ .

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.

If r_z and r_w are two deformed solutions and $\varphi \in \operatorname{Aut}(B, +, \circ)$ such that $\varphi(z) = w$, then r_z and r_w are trivially equivalent via φ .

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.

If r_z and r_w are two deformed solutions and $\varphi \in Aut(B, +, \circ)$ such that $\varphi(z) = w$, then r_z and r_w are trivially equivalent via φ .

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B, +, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ) . Then, the deformed solutions r_z and r_w are equivalent.

[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.

Bibliography

- F. Cedó, E. Jespers, J. Okniński, *Braces and the Yang-Baxter equation*, Commun. Math. Phys. **327**(1) (2014), 101–116.
- A. Doikou, B. Rybołowicz: *Novel non-involutive solutions of the Yang-Baxter equation from (skew) braces*, Preprint arXiv:2204.11580 (2022).

- G. Drinfel'd, On some unsolved problems in quantum group theory, in: Quantum Groups, Leningrad, 1990, in: Lecture Notes in Math. vol.**1510**(2) Springer, Berlin,(1992), 1–8.
- P. Etingof, T. Schedler, A. Soloviev, *Set-theoretical solutions to the quantum Yang-Baxter equation*, Duke Math. J. **100**(2) (1999), 169–209.

L. Guarnieri, L. Vendramin, *Skew braces and the Yang-Baxter equation*, Math. Comput. **86**(307) (2017), 2519–2534.

M. Mazzotta, B. Rybołowicz, P.S.: *Deformed solutions of the Yang-Baxter equation coming from dual weak braces and unital near-trusses*, Preprint arXiv:2304.05235 (2023).

W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra **307**(1) (2007) 153–170.

Thank you!

Contact information: ☑ paola.stefanelli@unisalento.it