A family of set-theoretical solutions of the Yang-Baxter equation associated to a skew brace

Paola Stefanelli

Joint work with
Marzia Mazzotta and Bernard Rybołowicz

Groups, Rings and the Yang-Baxter equation 2023

Blankenberge, 19-23 June

Given a set B, a map $r: B \times B \rightarrow B \times B$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)
$$

is said to be a set-theoretical solution, or briefly solution, of the YBE.

If we consider two maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write r as

$$
r(a, b)=\left(\lambda_{a}(b), p_{b}(a)\right)
$$

for all $a, b \in B$, then r is said to be
$>$ left non-degenerate if λ_{a} is bijective, for every $a \in B$;
> right non-degenerate if ρ_{b} is bijective, for every $b \in B$;

- non-degenerate if r is both left and right non-degenerate.

Given a set B, a map $r: B \times B \rightarrow B \times B$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)
$$

is said to be a set-theoretical solution, or briefly solution, of the YBE.

If we consider two maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

for all $a, b \in B$, then r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$;
> right non-degenerate if ρ_{b} is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

Given a set B, a map $r: B \times B \rightarrow B \times B$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)
$$

is said to be a set-theoretical solution, or briefly solution, of the YBE.

If we consider two maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

for all $a, b \in B$, then r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$;
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

Given a set B, a map $r: B \times B \rightarrow B \times B$ satisfying the braid relation

$$
\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)=\left(\mathrm{id}_{B} \times r\right)\left(r \times \mathrm{id}_{B}\right)\left(\mathrm{id}_{B} \times r\right)
$$

is said to be a set-theoretical solution, or briefly solution, of the YBE.

If we consider two maps $\lambda_{a}, \rho_{b}: B \rightarrow B$ and write r as

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

for all $a, b \in B$, then r is said to be

- left non-degenerate if λ_{a} is bijective, for every $a \in B$;
- right non-degenerate if ρ_{b} is bijective, for every $b \in B$;
- non-degenerate if r is both left and right non-degenerate.

Some solutions on groups

Theorem (Lu, Yan, Zhu - 2000)
Let G be a group, $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ maps and set $\lambda_{a}(b):=\lambda(a)(b)$ and $\rho_{b}(a):=\rho(b)(a)$. If $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ are a left action and a right action of G on itself, respectively, and

$$
\forall a, b \in G \quad a b=\lambda_{a}(b) \rho_{b}(a),
$$

then the map $r: G \times G \rightarrow G \times G$ defined by

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

is a non-degenerate bijective solution on G.
and ρ satisfy $L u$, Yan, Zhu conditions on G and the map $r: G \times G \rightarrow G \times G$ defined by

Some solutions on groups

Theorem (Lu, Yan, Zhu - 2000)
Let G be a group, $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ maps and set $\lambda_{a}(b):=\lambda(a)(b)$ and $\rho_{b}(a):=\rho(b)(a)$. If $\lambda, \rho: G \rightarrow \operatorname{Sym}_{G}$ are a left action and a right action of G on itself, respectively, and

$$
\forall a, b \in G \quad a b=\lambda_{a}(b) \rho_{b}(a),
$$

then the map $r: G \times G \rightarrow G \times G$ defined by

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

is a non-degenerate bijective solution on G.

Venkov solutions

If G is a group and, for all $a, b \in G$, set $\lambda_{a}=\operatorname{id}_{G}$ and $\rho_{b}(a)=b^{-1} a b$, then λ and ρ satisfy $L u$, Yan, Zhu conditions on G and the map $r: G \times G \rightarrow G \times G$ defined by

$$
r(a, b)=\left(b, b^{-1} a b\right)
$$

is a non-degenerate bijective solution on G.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

Any Jacobson radical ring ($B,+, \cdot)$ determines a solution r on B that is the map $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive, i.e., $r^{2}=\operatorname{id}_{B \times B}$.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces. Even more generally, non-degenerate bijective solutions can be obtained through skew braces.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

Any Jacobson radical ring $(B,+, \cdot)$ determines a solution r on B that is the map $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive, i.e., $r^{2}=\operatorname{id}_{B \times B}$.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces.
be obtained through skew braces.

Rump's approach

In 2007, Rump traced a novel research direction in the study of solutions.

Any Jacobson radical ring ($B,+, \cdot)$ determines a solution r on B that is the map $r: B \times B \rightarrow B \times B$ defined by

$$
r(a, b):=\left(\lambda_{a}(b), \lambda_{\lambda_{a}(b)}^{-1}(a)\right)
$$

where $\lambda_{a}(b):=a \cdot b+b$, for all $a, b \in B$. In particular, r is non-degenerate and involutive, i.e., $r^{2}=\operatorname{id}_{B \times B}$.

More generally, non-degenerate involutive solutions are strictly related to the structure of braces. Even more generally, non-degenerate bijective solutions can be obtained through skew braces.

Skew left braces

Definition (Rump-2007; Guarnieri, Vendramin-2017; Cedó, Jespers, and Okniński - 2014)
A triple $(B,+, \circ)$ is a skew left brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a left brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{o p}\right)$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a left brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{B}$.
- Any commutative left brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a left brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $a \cdot b:=a \circ b-a-b$, for all $a, b \in B$.

Skew left braces

Definition (Rump-2007; Guarnieri, Vendramin-2017; Cedó, Jespers, and Okniński - 2014)
A triple $(B,+, \circ)$ is a skew left brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a left brace.

> The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .
> - If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{\text {op }}\right)$ are skew left braces.
> - Any Jacobson radical ring is a left brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a left brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathrm{a}+\mathrm{b}+\mathrm{a} \cdot \mathrm{b}$, for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{B}$.
> - Any commutative left brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a left brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for $\mathrm{all} a, b \in B$.

Skew left braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)
A triple $(B,+, \circ)$ is a skew left brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a left brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{\text {op }}\right)$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a left brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{B}$.
- Any commutative left brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a left brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $a \cdot b:=a \circ b-a-b$, for all $a, b \in B$

Skew left braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)
A triple $(B,+, \circ)$ is a skew left brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a left brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{\circ p}\right)$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a left brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative left brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a left brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $a, b \in B$

Skew left braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)
A triple $(B,+, \circ)$ is a skew left brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a left brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{\text {op }}\right)$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a left brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.

Skew left braces

Definition (Rump - 2007; Guarnieri, Vendramin - 2017; Cedó, Jespers, and Okniński - 2014)
A triple $(B,+, \circ)$ is a skew left brace if $(B,+)$ and (B, \circ) are groups and

$$
a \circ(b+c)=a \circ b-a+a \circ c
$$

holds, for all $a, b, c \in B$. If $(B,+)$ is abelian then B is a left brace.
The groups $(B,+)$ and (B, \circ) have the same identity that we denote by 0 .

- If $(B,+)$ is a group, then $(B,+,+)$ and $\left(B,+,+{ }^{\text {op }}\right)$ are skew left braces.
- Any Jacobson radical ring is a left brace. Indeed, if $(B,+, \cdot)$ is a Jacobson radical ring, then $(B,+, \circ)$ is a left brace with \circ is the adjoint operation, where $\mathbf{a} \circ \mathbf{b}:=\mathbf{a}+\mathbf{b}+\mathbf{a} \cdot \mathbf{b}$, for all $a, b \in B$.
- Any commutative left brace is a Jacobson radical ring. Indeed, if $(B,+, \circ)$ is a left brace such that \circ is commutative, then $(B,+, \cdot)$ is Jacobson radical ring where $\mathbf{a} \cdot \mathbf{b}:=\mathbf{a} \circ \mathbf{b}-\mathbf{a}-\mathbf{b}$, for all $a, b \in B$.

Rump's solution associated to a skew brace

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If $(B,+, \circ)$ is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a- the inverse of a with respect to \circ, for every $a \in B$).

```
    r}\mp@subsup{r}{B}{}\mathrm{ is involutive }\Longleftrightarrow(B,+,\circ) is a brace
- Set, for all a, b\inB,
    \lambdaa}(b):=-a+a\circb and 的 (a):= (-a+a\circb)- ○a\circb,
and consider \lambda:B->\mp@subsup{\operatorname{Sym}}{B}{},a\mapsto\mp@subsup{\lambda}{a}{}\mathrm{ and }\rho:B->\mp@subsup{\operatorname{Sym}}{B}{},a\mapsto\mp@subsup{\rho}{b}{}\mathrm{ . Then, }\lambda
and \rho}\mathrm{ satisfy Lu, Yan, Zhu conditions on ( }B,\circ)\mathrm{ since }\lambda\mathrm{ and }\rho\mathrm{ determine a
left action and a right action of ( }B,0)\mathrm{ on itself, respectively, and
a\circb= \lambdaa(b)\circ\rhob}(a
```


Rump's solution associated to a skew brace

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If $(B,+, o)$ is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a^{-}the inverse of a with respect to o, for every $a \in B$).

- r_{B} is involutive $\Longleftrightarrow(B,+, \circ)$ is a brace.
- Set, for all $a, b \in B$,
and consider $\lambda: B \rightarrow \operatorname{Sym}_{B}, a \mapsto \lambda_{a}$ and $\rho: B \rightarrow \operatorname{Sym}_{B}, a \mapsto \rho_{b}$. Then, λ
and ρ satisfy $L u$, Yan, $Z h u$ conditions on (B, \circ) since λ and ρ determine a
left action and a right action of (B, \circ) on itself, respectively, and
$a 0 b-\lambda_{a}(b) \circ p_{b}(a)$

Rump's solution associated to a skew brace

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)
If $(B,+, \circ)$ is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a- the inverse of a with respect to o, for every $a \in B$).

- r_{B} is involutive $\Longleftrightarrow(B,+, \circ)$ is a brace.
- Set, for all $a, b \in B$,

$$
\lambda_{a}(b):=-a+a \circ b \quad \text { and } \quad \rho_{b}(a):=(-a+a \circ b)^{-} \circ a \circ b,
$$

and consider $\lambda: B \rightarrow \operatorname{Sym}_{B}, a \mapsto \lambda_{a}$ and $\rho: B \rightarrow \operatorname{Sym}_{B}, a \mapsto \rho_{b}$.
and ρ satisfy $L u$, Yan, Zhu conditions on (B, \circ) since λ and ρ determine a left action and a right action of $(B, 0)$ on itself, respectively, and

$$
a \circ b=\lambda_{a}(b) \circ \rho_{b}(a) .
$$

Rump's solution associated to a skew brace

Theorem (Rump - 2007; Guarnieri, Vendramin - 2017)

If $(B,+, \circ)$ is a skew brace, then the map $r_{B}: B \times B \rightarrow B \times B$ defined by

$$
r_{B}(a, b):=\left(-a+a \circ b,(-a+a \circ b)^{-} \circ a \circ b\right)
$$

is a non-degenerate bijective solution (with a- the inverse of a with respect to o, for every $a \in B$).

- r_{B} is involutive $\Longleftrightarrow(B,+, \circ)$ is a brace.
- Set, for all $a, b \in B$,

$$
\lambda_{a}(b):=-a+a \circ b \quad \text { and } \quad \rho_{b}(a):=(-a+a \circ b)^{-} \circ a \circ b,
$$

and consider $\lambda: B \rightarrow \operatorname{Sym}_{B}, a \mapsto \lambda_{a}$ and $\rho: B \rightarrow \operatorname{Sym}_{B}, a \mapsto \rho_{b}$. Then, λ and ρ satisfy $L u$, Yan, Zhu conditions on (B, \circ) since λ and ρ determine a left action and a right action of (B, \circ) on itself, respectively, and

$$
a \circ b=\lambda_{a}(b) \circ \rho_{b}(a)
$$

Other solutions associated to skew left braces

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_{B} by certain parameters.

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) o z=a 0 z-b o z+c o z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $\breve{r}_{z}: B \times B \rightarrow B \times B$ given by $\because(a, b)-\left(a 0 b-a 0 z+z,(a 0 b-a 0 z+z)^{-0} 000 b\right)$
is a non-degenerate and bijective solution, called deformed solution by z on B Under the above assumption (*), the map r_{z} also is
a non-degenerate and bijective solution.
In particular, $y_{z}^{-1}=r_{z}$. Clearly, $r_{0}=r_{B}$ and $r_{0}=r_{B}^{-1}$.
First hint: Two-sided skew braces are crucial in the investigation of deformed solutions.

Other solutions associated to skew left braces

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_{B} by certain parameters.

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_{z}: B \times B \rightarrow B \times B$ given by

$$
\check{r}_{z}(a, b)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-} \circ a \circ b\right),
$$

is a non-degenerate and bijective solution, called deformed solution by z on B.
a non-degenerate and bijective solution.
In particular, $r_{z}^{-1}=r_{z-}$. Clearly, $r_{0}=r_{B}$ and $r_{0}=r_{B}^{-1}$.
First hint: Two-sided skew braces are crucial in the investigation of deformed solutions.

Other solutions associated to skew left braces

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_{B} by certain parameters.

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_{z}: B \times B \rightarrow B \times B$ given by

$$
\check{r}_{z}(a, b)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-} \circ a \circ b\right),
$$

is a non-degenerate and bijective solution, called deformed solution by z on B. Under the above assumption (*), the map r_{z} also is

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

a non-degenerate and bijective solution.
In particular, $\check{r}_{z}^{-1}=r_{z^{-}}$. Clearly, $r_{0}=r_{B}$ and $\check{r}_{0}=r_{B}^{-1}$
First hint: Two-sided skew braces are crucial in the investigation of deformed solutions.

Other solutions associated to skew left braces

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_{B} by certain parameters.

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_{z}: B \times B \rightarrow B \times B$ given by

$$
\check{r}_{z}(a, b)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-} \circ a \circ b\right),
$$

is a non-degenerate and bijective solution, called deformed solution by z on B. Under the above assumption (*), the map r_{z} also is

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

a non-degenerate and bijective solution.
In particular, $\check{r}_{z}^{-1}=r_{z^{-}}$.

First hint: Two-sided skew braces are crucial in the investigation of deformed solutions.

Other solutions associated to skew left braces

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_{B} by certain parameters.

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_{z}: B \times B \rightarrow B \times B$ given by

$$
\check{r}_{z}(a, b)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-} \circ a \circ b\right),
$$

is a non-degenerate and bijective solution, called deformed solution by z on B. Under the above assumption (*), the map r_{z} also is

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

a non-degenerate and bijective solution.
In particular, $\check{r}_{z}^{-1}=r_{z^{-}}$. Clearly, $r_{0}=r_{B}$ and $\check{r}_{0}=r_{B}^{-1}$.

First hint: Two-sided skew braces are crucial in the investigation of deformed solutions.

Other solutions associated to skew left braces

[Doikou, Rybołowicz - 2022]: A new family of solutions can be obtained from any skew left brace B by "deforming" r_{B} by certain parameters.

Let $(B,+, \circ)$ be a skew left brace and $z \in B$ such that the identity

$$
\begin{equation*}
(a-b+c) \circ z=a \circ z-b \circ z+c \circ z \tag{*}
\end{equation*}
$$

holds, for all $a, b, c \in B$. Then, the map $\check{r}_{z}: B \times B \rightarrow B \times B$ given by

$$
\check{r}_{z}(a, b)=\left(a \circ b-a \circ z+z,(a \circ b-a \circ z+z)^{-} \circ a \circ b\right),
$$

is a non-degenerate and bijective solution, called deformed solution by z on B. Under the above assumption (*), the map r_{z} also is

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

a non-degenerate and bijective solution.
In particular, $\check{r}_{z}^{-1}=r_{z^{-}}$. Clearly, $r_{0}=r_{B}$ and $\check{r}_{0}=r_{B}^{-1}$.
First hint: Two-sided skew braces are crucial in the investigation of deformed solutions.

First remarks on deformed solutions

If $(B,+, \circ)$ is a skew left brace, hereinafter the focus will be on the map

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

and, for all $a, b \in B$, we fix the following notation:

If $z \in B$ gives rise to a deformed solution r_{z}, then the following hold:

- $\forall a b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$
- the map $\tau^{z}:(B, 0) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism.
- Considered the map $\sigma^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, a \mapsto \sigma_{a}^{z}$, it holds that

$$
\sigma^{z} \text { is a homomorphism } \Longleftrightarrow \forall a \in B \quad a \circ z=z+a
$$

Remark: The maps σ^{z} and τ^{z} do not satisfy Lu, Yan, Zhu conditions on (B, \circ).
P. Stefanelli | A family of set-theoretical solutions of the YBE associated to a skew brace

First remarks on deformed solutions

If $(B,+, \circ)$ is a skew left brace, hereinafter the focus will be on the map

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

and, for all $a, b \in B$, we fix the following notation:

$$
\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \quad \text { and } \quad \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b .
$$

If $z \in B$ gives rise to a deformed solution r_{z}, then the following hold:

- $\forall a b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$
- the map $\tau^{z}:(B, 0) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism.
- Considered the map $\sigma^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, a \mapsto \sigma_{a}^{z}$, it holds that
σ^{z} is a homomorphism $\Longleftrightarrow \quad \forall a \in B \quad a \circ z=z+a$

Remark: The maps σ^{z} and τ^{z} do not satisfy $L u$, Yan, Zhu conditions on (B, \circ).

First remarks on deformed solutions

If $(B,+, \circ)$ is a skew left brace, hereinafter the focus will be on the map

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

and, for all $a, b \in B$, we fix the following notation:

$$
\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \text { and } \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b \text {. }
$$

If $z \in B$ gives rise to a deformed solution r_{z}, then the following hold:

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.
- the map $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism.
- Considered the map $\sigma^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, a \mapsto \sigma_{a}^{z}$, it holds that
σ^{2} is a homomorphism

Remark: The maps σ^{z} and τ^{z} do not satisfy Lu, Yan, Zhu conditions on (B, \circ).

First remarks on deformed solutions

If $(B,+, \circ)$ is a skew left brace, hereinafter the focus will be on the map

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

and, for all $a, b \in B$, we fix the following notation:

$$
\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \text { and } \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b \text {. }
$$

If $z \in B$ gives rise to a deformed solution r_{z}, then the following hold:

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.
- the map $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism.
- Considered the map $\sigma^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, a \mapsto \sigma_{a}^{z}$, it holds that

$$
\sigma^{z} \text { is a homomorphism } \Longleftrightarrow \forall a \in B \quad a \circ z=z+a
$$

Remark: The maps σ^{z} and τ^{z} do not satisfy Lu, Yan, Zhu conditions on (B, \circ).

First remarks on deformed solutions

If $(B,+, \circ)$ is a skew left brace, hereinafter the focus will be on the map

$$
r_{z}(a, b)=\left(-a \circ z+a \circ b \circ z,(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b\right)
$$

and, for all $a, b \in B$, we fix the following notation:

$$
\sigma_{a}^{z}(b):=-a \circ z+a \circ b \circ z \text { and } \tau_{b}^{z}(a):=(-a \circ z+a \circ b \circ z)^{-} \circ a \circ b \text {. }
$$

If $z \in B$ gives rise to a deformed solution r_{z}, then the following hold:

- $\forall a, b \in B \quad a \circ b=\sigma_{a}^{z}(b) \circ \tau_{b}^{z}(a)$.
- the map $\tau^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, b \mapsto \tau_{b}^{z}$ is a group anti-homomorphism.
- Considered the map $\sigma^{z}:(B, \circ) \rightarrow \operatorname{Sym}_{B}, a \mapsto \sigma_{a}^{z}$, it holds that

$$
\sigma^{z} \text { is a homomorphism } \Longleftrightarrow \forall a \in B \quad a \circ z=z+a
$$

Remark: The maps σ^{z} and τ^{z} do not satisfy Lu, Yan, Zhu conditions on (B, \circ).

The study of parameters

Question: What elements z in a skew left brace B ensure that r_{z} is a solution?

Definition (MRS - 2023)
Let ($B,+, \circ$) be a skew left brace. Then, we call the set

$$
\mathcal{D}_{r}(B)=\{z \in B \mid \forall a, b \in B \quad(a+b) \circ z=a \circ z-z+b \circ z\},
$$

the right distributor of B.
Clearly, $0 \in \mathcal{D}_{r}(B)$.

A skew left brace $(B,+, \circ)$ is two-sided, i.e., the identity
holds, for all $a, b, c \in B$, if and only if $\mathcal{D}_{r}(B)=B$.

The study of parameters

Question: What elements z in a skew left brace B ensure that r_{z} is a solution?

Definition (MRS - 2023)
Let $(B,+, \circ$) be a skew left brace. Then, we call the set

$$
\mathcal{D}_{r}(B)=\{z \in B \mid \forall a, b \in B \quad(a+b) \circ z=a \circ z-z+b \circ z\},
$$

the right distributor of B.
Clearly, $0 \in \mathcal{D}_{r}(B)$.

A skew left brace $(B,+, \circ)$ is two-sided, i.e., the identity
holds, for all $a, b, c \in B$, if and only if $\mathcal{D}_{r}(B)=B$.

The study of parameters

Question: What elements z in a skew left brace B ensure that r_{z} is a solution?

Definition (MRS - 2023)
Let $(B,+, \circ$) be a skew left brace. Then, we call the set

$$
\mathcal{D}_{r}(B)=\{z \in B \mid \forall a, b \in B \quad(a+b) \circ z=a \circ z-z+b \circ z\},
$$

the right distributor of B.
Clearly, $0 \in \mathcal{D}_{r}(B)$.

A skew left brace $(B,+, \circ)$ is two-sided, i.e., the identity
holds, for all $a, b, c \in B$, if and only if $\mathcal{D}_{r}(B)=B$.

The study of parameters

Question: What elements z in a skew left brace B ensure that r_{z} is a solution?

Definition (MRS - 2023)
Let ($B,+, \circ$) be a skew left brace. Then, we call the set

$$
\mathcal{D}_{r}(B)=\{z \in B \mid \forall a, b \in B \quad(a+b) \circ z=a \circ z-z+b \circ z\},
$$

the right distributor of B.
Clearly, $0 \in \mathcal{D}_{r}(B)$.

A skew left brace $(B,+, \circ)$ is two-sided, i.e., the identity

$$
(a+b) \circ c=a \circ c-c+b \circ c
$$

holds, for all $a, b, c \in B$, if and only if $\mathcal{D}_{r}(B)=B$.

A characterization

Theorem (MRS - 2023)
If $(B,+, \circ)$ is a skew left brace and $z \in B$, then

$$
r_{z} \text { is a solution } \Longleftrightarrow z \in \mathcal{D}_{r}(B) .
$$

Any element z in a two-sided skew left brace B determine a solution r_{z}.
P. Stefanelli | A family of set-theoretical solutions of the YBE associated to a skew brace

A characterization

Theorem (MRS - 2023)
If $(B,+, \circ)$ is a skew left brace and $z \in B$, then

$$
r_{z} \text { is a solution } \Longleftrightarrow z \in \mathcal{D}_{r}(B) .
$$

Any element z in a two-sided skew left brace B determine a solution r_{z}.

Some examples

The other limit case is when there exists only the trivial deformation, namely, $\mathcal{D}_{r}(B)=\{0\}$.

Example 1

Let $B:=(\mathbb{Z},+, \circ)$ be the left brace on $(\mathbb{Z},+)$ with $a \circ b=a+(-1)^{a} b$, for all $a, b \in \mathbb{Z}$ (cf. [Rump - 2007]). Then, $\mathcal{D}_{r}(B)=\{0\}$.

The following is an example of a skew left brace in which $\mathcal{D}_{r}(B)$ is not trivial.
Example?
Let B be the left brace in Example 1 and $U_{9}:=\left(U\left(\mathbb{Z} / 2^{9} \mathbb{Z}\right),+_{1}, \circ\right)$ the left brace where

with + and . the usual operations in the ring modulo 2^{9}. Then, $U_{9} \times B$ is a left brace such that

$$
\mathcal{D}_{r}\left(U_{9} \times B\right)=U_{9} \times\{0\} .
$$

Some examples

The other limit case is when there exists only the trivial deformation, namely, $\mathcal{D}_{r}(B)=\{0\}$.

Example 1

Let $B:=(\mathbb{Z},+, \circ)$ be the left brace on $(\mathbb{Z},+)$ with $a \circ b=a+(-1)^{a} b$, for all $a, b \in \mathbb{Z}$ (cf. [Rump - 2007]). Then, $\mathcal{D}_{r}(B)=\{0\}$.

The following is an example of a skew left brace in which $\mathcal{D}_{r}(B)$ is not trivial.

Example 2

Let B be the left brace in Example 1 and $U_{9}:=\left(U\left(\mathbb{Z} / 2^{9} \mathbb{Z}\right),+{ }_{1}, \circ\right)$ the left brace where

$$
\forall a, b \in U\left(\mathbb{Z} / 2^{9} \mathbb{Z}\right) \quad a+{ }_{1} b=a-1+b \quad \text { and } \quad a \circ b=a b
$$

with + and the usual operations in the ring modulo 2^{9}. Then, $U_{9} \times B$ is a left brace such that

$$
\mathcal{D}_{r}\left(U_{9} \times B\right)=U_{9} \times\{0\}
$$

Properties of the right distributor

Let $(B,+, \circ)$ be a skew left brace.

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ)
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a left brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

- $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\}$.
- $\operatorname{Ann}(B) \subset \mathcal{D}_{r}(B)$, where $\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap 7(B$ o) with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Properties of the right distributor

Let $(B,+, \circ)$ be a skew left brace.

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ)
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \notin(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a left brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

- Fix $(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\}$.
- $\operatorname{Ann}(B) \subset \mathcal{D}_{r}(B)$, where $\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap 7(B$ o) with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Properties of the right distributor

Let $(B,+, \circ)$ be a skew left brace.

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ)
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \not \subset(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a left brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

- $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\}$.
- $\operatorname{Ann}(B) \subset \mathcal{D}_{r}(B)$, where $\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap 7(B$ o) with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Properties of the right distributor

Let $(B,+, \circ)$ be a skew left brace.

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ)
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \not \leq(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a left brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.
> - $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$, where Fix $(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\}$
> - $\operatorname{Ann}(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$ with Soc $(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Properties of the right distributor

Let $(B,+, \circ)$ be a skew left brace.

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ)
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \not \subset(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a left brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

- $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\}$.

Properties of the right distributor

Let $(B,+, \circ)$ be a skew left brace.

$$
Z(B, \circ) \leq\left(\mathcal{D}_{r}(B), \circ\right) \leq(B, \circ)
$$

In general, $\left(\mathcal{D}_{r}(B),+\right) \not \subset(B,+)$, unless we get into particular cases.
If $(B,+, \circ)$ is a left brace, then $\mathcal{D}_{r}(B)$ is a two-sided subbrace of B.

- $\operatorname{Fix}(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Fix}(B)=\left\{a \in B \mid \forall x \in B \lambda_{x}(a)=a\right\}$.
- $\operatorname{Ann}(B) \subseteq \mathcal{D}_{r}(B)$, where $\operatorname{Ann}(B)=\operatorname{Soc}(B) \cap Z(B, \circ)$ with $\operatorname{Soc}(B)=\{a \in B \mid \forall b \in B \quad a+b=a \circ b \wedge a+b=b+a\}$.

Is $\mathcal{D}_{r}(B)$ an ideal of B ?

It becomes natural to wonder when $\mathcal{D}_{r}(B)$ is an ideal of a skew left brace ($B,+, \circ$).

Let us recall that a subset I of B is an ideal of B if it is both a normal subgroup of $(B,+)$ and (B, \circ) and I is λ-invariant, namely $\lambda_{a}(I) \subseteq I$, for every $a \in B$.

Example
Let $U_{0} \times B$ the left brace seen before. Then, the right distributor $\mathcal{D}_{r}\left(U_{9} \times B\right)$ is an ideal of $U_{9} \times B$

Is $\mathcal{D}_{r}(B)$ an ideal of B ?

It becomes natural to wonder when $\mathcal{D}_{r}(B)$ is an ideal of a skew left brace ($B,+, \circ$).

Let us recall that a subset I of B is an ideal of B if it is both a normal subgroup of $(B,+)$ and (B, \circ) and I is λ-invariant, namely $\lambda_{a}(I) \subseteq I$, for every $a \in B$.

Is $\mathcal{D}_{r}(B)$ an ideal of B ?

It becomes natural to wonder when $\mathcal{D}_{r}(B)$ is an ideal of a skew left brace ($B,+, \circ$).

Let us recall that a subset I of B is an ideal of B if it is both a normal subgroup of $(B,+)$ and (B, \circ) and I is λ-invariant, namely $\lambda_{a}(I) \subseteq I$, for every $a \in B$.

Example

Let $U_{9} \times B$ the left brace seen before. Then, the right distributor $\mathcal{D}_{r}\left(U_{9} \times B\right)$ is an ideal of $U_{9} \times B$.

Important remark on deformed solutions

Left braces may determine non-involutive solutions.

Example [Doikou, Rybołowicz - 2022]
Consider Odd $:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ and the structure of brace $($ Odd, $+1,0)$
where the binary operation $+_{1}$ and \circ are given by

$$
\forall a, b \in \text { Odd } a+1 b:=a-1+b \text { and } a \circ b:=a \cdot b
$$

with + , are the usual addition and the multiplication of rational numbers,
respectively. Then, for every $z \neq 1$, the solution r_{z} is not involutive.

Important remark on deformed solutions

Left braces may determine non-involutive solutions.

Example [Doikou, Rybołowicz - 2022]

Consider Odd $:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ and the structure of brace (Odd, $+_{1}, \circ$) where the binary operation $+_{1}$ and \circ are given by

$$
\forall a, b \in \operatorname{Odd} \quad a+{ }_{1} b:=a-1+b \quad \text { and } \quad a \circ b:=a \cdot b
$$

with,$+ \cdot$ are the usual addition and the multiplication of rational numbers, respectively.

Important remark on deformed solutions

Left braces may determine non-involutive solutions.

Example [Doikou, Rybołowicz - 2022]

Consider Odd $:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ and the structure of brace (Odd, $+_{1}, \circ$) where the binary operation $+_{1}$ and \circ are given by

$$
\forall a, b \in \operatorname{Odd} \quad a+{ }_{1} b:=a-1+b \quad \text { and } \quad a \circ b:=a \cdot b
$$

with + , • are the usual addition and the multiplication of rational numbers, respectively. Then, for every $z \neq 1$, the solution r_{z} is not involutive.

Equivalent or not equivalent solutions?

Question: Let $(B,+, \circ)$ be a skew left brace. For which parameters $z, w \in B$, are the deformed solutions r_{z} and r_{w} equivalent?
[Etingof, Schedler, Soloviev - 1999]: Two solutions r and s on two sets X and Y, respectively, are said to be equivalent if there exists a bijective map $\varphi: X \rightarrow Y$ such that

namely, the diagram

is commutative.

Equivalent or not equivalent solutions?

Question: Let $(B,+, \circ)$ be a skew left brace. For which parameters $z, w \in B$, are the deformed solutions r_{z} and r_{w} equivalent?
[Etingof, Schedler, Soloviev - 1999]: Two solutions r and s on two sets X and Y, respectively, are said to be equivalent if there exists a bijective map $\varphi: X \rightarrow Y$ such that

$$
(\varphi \times \varphi) r=s(\varphi \times \varphi)
$$

namely, the diagram

is commutative.

The two-sided case

If r_{z} and r_{w} are two deformed solutions and $\varphi \in \operatorname{Aut}(B,+, \circ)$ such that $\varphi(z)=w$, then r_{z} and r_{w} are trivially equivalent via φ.

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)
Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.
[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

Consider the trivial left brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solutions r_{0} and r_{1} coincide, but 0 and 1 trivially belong to different conjugacy classes.

The two-sided case

If r_{z} and r_{w} are two deformed solutions and $\varphi \in \operatorname{Aut}(B,+, \circ)$ such that $\varphi(z)=w$, then r_{z} and r_{w} are trivially equivalent via φ.

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)
Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.
[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of ($B, 0$) are skew brace automorphisms of B.

Consider the trivial left brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solutions r_{0} and r_{1} coincide, but 0 and 1 trivially belong to different conjugacy classes.

The two-sided case

If r_{z} and r_{w} are two deformed solutions and $\varphi \in \operatorname{Aut}(B,+, \circ)$ such that $\varphi(z)=w$, then r_{z} and r_{w} are trivially equivalent via φ.

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.
[Nasybullov - 2019; Trappeniers - 2023]: All the inner automorphisms of ($B, 0$) are skew brace automorphisms of B

Consider the trivial left brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solutions r_{0} and r_{1} coincide, but 0 and 1 trivially belong to different conjugacy classes.

The two-sided case

If r_{z} and r_{w} are two deformed solutions and $\varphi \in \operatorname{Aut}(B,+, \circ)$ such that $\varphi(z)=w$, then r_{z} and r_{w} are trivially equivalent via φ.

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.
[Nasybullov-2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

Consider the trivial left brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solutions r_{0} and r_{1} coincide, but 0 and 1 trivially belong to different conjugacy classes.

The two-sided case

If r_{z} and r_{w} are two deformed solutions and $\varphi \in \operatorname{Aut}(B,+, \circ)$ such that $\varphi(z)=w$, then r_{z} and r_{w} are trivially equivalent via φ.

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.
[Nasybullov-2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.
Consider the trivial left brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solutions r_{0} and r_{1} coincide, but 0 and 1 trivially belong to different conjugacy classes.

The two-sided case

If r_{z} and r_{w} are two deformed solutions and $\varphi \in \operatorname{Aut}(B,+, \circ)$ such that $\varphi(z)=w$, then r_{z} and r_{w} are trivially equivalent via φ.

In the special case of a two-sided skew brace, such a map φ exists when z and w are in the same conjugacy class.

Proposition (MRS - 2023)

Let $(B,+, \circ)$ be a two-sided skew brace and $z, w \in B$ belonging to the same conjugacy class in (B, \circ). Then, the deformed solutions r_{z} and r_{w} are equivalent.
[Nasybullov-2019; Trappeniers - 2023]: All the inner automorphisms of (B, \circ) are skew brace automorphisms of B.

The converse is not true.
Consider the trivial left brace $(B,+,+)$ on the cyclic group $\mathbb{Z} / 2 \mathbb{Z}$. Then, the solutions r_{0} and r_{1} coincide, but 0 and 1 trivially belong to different conjugacy classes.

Bibliography

圊
F．Cedó，E．Jespers，J．Okniński，Braces and the Yang－Baxter equation， Commun．Math．Phys．327（1）（2014），101－116．
目
A．Doikou，B．Rybołowicz：Novel non－involutive solutions of the Yang－Baxter equation from（skew）braces，Preprint arXiv：2204．11580（2022）．

G．Drinfel＇d，On some unsolved problems in quantum group theory，in：Quantum Groups，Leningrad，1990，in：Lecture Notes in Math．vol．1510（2）Springer， Berlin，（1992），1－8．
R．P．Etingof，T．Schedler，A．Soloviev，Set－theoretical solutions to the quantum Yang－Baxter equation，Duke Math．J．100（2）（1999），169－209．

L．Guarnieri，L．Vendramin，Skew braces and the Yang－Baxter equation， Math．Comput．86（307）（2017），2519－2534．
圊
M．Mazzotta，B．Rybołowicz，P．S．：Deformed solutions of the Yang－Baxter equation coming from dual weak braces and unital near－trusses， Preprint arXiv：2304．05235（2023）．
Fin Wump，Braces，radical rings，and the quantum Yang－Baxter equation， J．Algebra 307（1）（2007）153－170．

Thank you!

