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Preliminaries and notation

Definition
A skew (left) brace is a triple (A,+, ◦) with A a set, (A,+) and
(A, ◦) group structures, and for all a, b, c ∈ A,

a ◦ (b+ c) = a ◦ b− a+ a ◦ c.

If (A,+) is abelian, then we say that A is a brace
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Preliminaries and notation

We define λa(b) = −a+ a ◦ b and in this way obtain an action

λ : (A, ◦) → Aut(A,+) : a 7→ λa.
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Strong left ideals and ideals

Definition
Let A be a skew brace, a subgroup I of (A,+) is
1. A strong left ideal if λa(I) ⊆ I for all a ∈ A and I is normal in

(A,+).
2. An ideal if λa(I) ⊆ I for all a ∈ A and I is normal in (A,+) and

(A, ◦).
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Multipermutation skew braces

For any skew brace A, its socle

Soc(A) = ker λ ∩ Z(A,+),

is an ideal of A. Inductively we define

Ret0(A) = A, Reti+1(A) = Reti(A)/ Soc(Reti(A)).

If there exists some n such that Retn(A) = 0, then we say that A
is multipermutation.
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Preliminaries and notation

Definition
A set-theoretical solution to the YBE is a pair (X, r) with X a
non-empty set and r : X × X → X × X a bijective map such that

r1r2r1 = r2r1r2,

with r1 = r × idX and r2 = idX × r. A solution (X, r) is
▶ non-degenerate if all σx, τx are invertible maps, with

r(x, y) = (σx(y), τy(x)),
By a solution we mean a non-degenerate set-theoretical solution
to the YBE.
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Preliminaries and notation

The orbits of a solution (X, r) are the smallest partition of X
which is invariant under σx and τx for all x ∈ X. A solution is
indecomposable if it contains a unique orbit.
Equivalently, a solution is indecomposable if there exists no
non-trivial partition X = X1 ∪ X2 such that r(Xi × Xj) = Xj × Xi for
all i, j ∈ {1,2}.
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Preliminaries and notation

Let (X, r) be a solution. Define

(G(X, r), ◦) = ⟨x ∈ X | x ◦ y = σx(y) ◦ τy(x), ∀x, y ∈ X⟩

then there is canonical additive structure (G(X, r),+, ◦) is a skew
brace.
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Preliminaries and notation

Also define

(G(X, r), ◦) = ⟨(σx, τ
−1
x ) | x ∈ X⟩ ⊆ Perm(X)× Perm(X)⟩

then there exists a canonical additive structure such that
(G(X, r),+, ◦) is a skew brace such x 7→ (σx, τ

−1
x ) extends to a

skew brace homomorphism

(G(X, r),+, ◦) → (G(X, r),+, ◦).
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Preliminaries and notation

Proposition ([GV17])
If A is a skew brace then r : A2 → A2 with

rA(a, b) = (λa(b), λa(b) ◦ a ◦ b),

yields a solution (A, rA).
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Preliminaries and notation

Theorem ([BCJ16, Bac18])
Given a skew brace A, then it is possible to construct all solutions
(X, r) such that G(X, r) ∼= A.

Central question: what properties of (X, r) correspond to
properties of G(X, r) and vice versa.
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Cycle bases

Definition
We define an action θ : (A,+)⋊ (A, ◦) → Aut(A,+) where for all
a, b, c ∈ A,

θ(a,b)(c) = a+ λb(c)− a.

The orbits of θ are called the orbits of A.

Definition
A subset X of a skew brace A is cycle base if θ(a,b)(X) ⊆ X for all
a, b ∈ A and ⟨X⟩+ = A. If X consists of a single orbit then it is a
transitive cycle base

Cycle bases for skew braces have not explicitly been defined
before, but have appeared in literature.
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Why cycle bases?

A cycle base X of A gives rise to a solution in two different ways:
1. The solution (A, rA) restricts to X. The orbits of (X, rA|X×X)

coincide with the orbits of A contained in X.
2. The construction of Bachiller, Cedó and Jespers starts with

a cycle base.
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Why transitive cycle bases?

A transitive cycle base X of A gives rise to indecomposable
solutions:
1. The restriction of (A, rA) to X is indecomposable.
2. To obtain an indecomposable solution through the

construction by Bachiller, Cedó and Jespers, we first of all
need a transitive cycle base.
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When does a skew brace admit a transitive cycle
base?

Theorem ([SS18, Rum20])
Let A be a multipermutation brace. Then A admits a transitive
cycle base if and only if it is one-generated. Every element
contained in a transitive cycle base generates A and every orbit
containing a generator is a transitive cycle base.
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Is there a general connection between cycle bases
and generators?

Definition
Let A be a skew brace, a subgroup I of (A,+) is
1. A strong left ideal if λa(I) ⊆ I for all a ∈ A and I is normal in

(A,+).
2. An ideal if λa(I) ⊆ I for all a ∈ A and I is normal in (A,+) and

(A, ◦).

Proposition ([CT])
Let X be a union of orbits of a skew brace A and let Y be a set of
representatives of X. Then X is a cycle base if and only if Y
generates A as a strong left ideal.
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Is there a general connection between cycle bases
and generators?

Corollary ([CT])
The minimal number of orbits in a cycle base of A coincides with
the minimal number of generators of A as a strong left ideal. In
particular, a skew brace admits a transitive cycle base if and only
if it is one-generated as a strong left ideal.



18

When does a skew brace admit a transitive cycle
base?

Theorem ([SS18, Rum20])
Let A be a multipermutation brace. Then A admits a transitive
cycle base if and only if it is one-generated. Every element
contained in a transitive cycle base generates A and every orbit
containing a generator is a transitive cycle base.
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When does a skew brace admit a transitive cycle
base?

Theorem ([SS18, Rum20])
Let A be a multipermutation brace. A is one-generated as a strong
left ideal if and only if it is one-generated as a brace. Every element
generating A as a strong left ideal also generates A as a brace.
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When does a skew brace admit a transitive cycle
base?

Theorem ([SS18, Rum20, CT])
Let A be a multipermutation skew brace and X ⊆ A. Then X
generates A as a strong left ideal if and only if X generates A as a
skew brace.
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Does this only work for multipermutation skew braces?

Similar related results can be obtained for left nilpotent skew
braces and centrally nilpotent skew braces, relating generating
sets of skew braces.
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Thank you

Thank you for listening!
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