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THE YANG-BAXTER EQUATION: A PICTURE
Definition
A set-theoretic solution to the Yang-Baxter equation is a tuple
(X, r), where X is a set and r : X × X −→ X × X a function such
that (on X3)

(r × idX) (idX × r) (r × idX) = (idX × r) (r × idX) (idX × r) .

For further reference, denote r(x, y) = (λx(y), ρy(x)).
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DEFINITIONS AND EXAMPLES

Definition
A set-theoretic solution (X, r) is called
I left (resp. right) non-degenerate, if λx (resp. ρy) is bijective,
I non-degenerate, if it is both left and right non-degenerate,
I involutive, if r2 = idX×X,

Examples
I Twist solution: r(x, y) = (y, x),
I Lyubashenko, where f, g : X → X are maps with fg = gf :

r(x, y) = (f(y), g(x)).
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THE STRUCTURE MONOID AND GROUP

Definition
Let (X, r) be a set-theoretic solution of the Yang-Baxter
equation. Then the group

G(X, r) =
〈
x ∈ X | xy = λx(y)ρy(x)

〉
,

is called the structure group of (X, r).
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WHAT ARE SKEW LEFT BRACES

Definition (Rump, CJO, GV)
Two groups (A,+) and (A, ◦) form a skew left brace (A,+, ◦), if
for any a, b, c ∈ A, it holds that

a ◦ (b + c) = (a ◦ b)− a + (a ◦ c),

where −a denotes the inverse of a in (A,+).
Moreover, if (A,+) is abelian, then (A,+, ◦) is a left brace
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EXAMPLES OF SKEW BRACES

Example
1. Every group (G,+) has the skew left brace structure

(G,+,+), these are trivial skew left braces.
2. The dihedral group D2n =

〈
a, b | an = b2 = 1, bab = a−1〉

has a left brace structure, where aibj + akbl = ai+k+jlbj+l

with j, l ∈ {0, 1}.
3. Radical rings.
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CREATING SOLUTIONS ON SKEW BRACES (1)

Definition (Rump, CJO, GV)
Let (B,+) and (B, ◦) be groups on the same set B such that for
any a, b, c ∈ B it holds that

a ◦ (b + c) = (a ◦ b)− a + (a ◦ c).

Then (B,+, ◦) is called a skew (left) brace
If (B,+) is abelian, one says that (B,+, ◦) is a left brace.

Denote for a, b ∈ B, the map λa(b) = −a + a ◦ b. Then,
λ : (B, ◦) −→ Aut(B,+) : a 7→ λa is a well-defined group
morphism.
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CREATING SOLUTIONS ON SKEW BRACES (2)

Theorem
Let (B,+, ◦) be a skew left brace. Denote for any a, b ∈ B, the
map rB(a, b) = (λa(b), (a + b) ◦ b). Then (B, rB) is a bijective
non-degenerate solution. Moreover, if (B,+) is abelian, then
(B, rB) is involutive.

Remark
Let (X, r) be a bijective non-degenerate set-theoretic solution.
Then, G(X, r) is a skew left brace and carries an associated
solution as a skew brace.
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THE *-OPERATION IN SKEW LEFT BRACES

Definition
Let (A,+, ◦) be a skew left brace. For any a, b ∈ A, denote

a ∗ b = −a + a ◦ b− b = λa(b)− b.

Denote X ∗ Y for the additive subgroup generated by x ∗ y, where
x ∈ X, y ∈ Y and X,Y ⊆ A.

Example
1. For (G,+,+), one sees that a ∗ b = 0. Actually a

characterization.
2. For (D2n,+, ·) one can see that (aibj) ∗ (akbl) ∈ 〈a〉.
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SOLUTIONS LIKE LYUBASHENKO’S

Definition (Retraction)
Let (X, r) be a finite bijective non-degenerate set-theoretic
solution. Define the relation x ∼ y on X, when λx = λy and
ρx = ρy. Then, there exists a natural set-theoretic solution on
X/ ∼ called the retraction Ret(X, r).

Denote for n ≥ 2, Retn(X, r) = Ret
(
Retn−1(X, r)

)
. If there exists

a positive integer n such that |Retn(X, r)| = 1, then (X, r) is
called a multipermutation solution
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WHY ARE MULTIPERMUTATION SOLUTIONS INTERESTING

Theorem (CJOBVAGI)
Let (X, r) be a finite involutive non-degenerate set-theoretic
solution. The following statements are equivalent,
I the solution (X, r) is a multipermutation solution,
I the group G(X, r) is left orderable,
I the group G(X, r) is diffuse,
I the group G(X, r) is poly-Z.

Breaks down for non-involutive solutions, as G(X, r) has torsion
in that case!
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ALL MULTIPERMUTATION SOLUTIONS

Proposition
Let (X, r) be a multipermutation solution, then the skew brace
G(X, r) is of nilpotent type.
So we focus attention on so-called skew braces (B,+, ◦) of
nilpotent type, i.e. (B,+) is a nilpotent group.
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NON-ASSOCIATIVE, SO SIDES MATTER

Left Nilpotent
I Bn+1 = B ∗ Bn left ideals
I |Bk| = 1, then left

nilpotent
I Nilpotent type:

(B, ◦) nilpotent
I Example: (C2n ,D2n)

Right nilpotent
I B(n+1) = B(n) ∗ B ideals
I |B(k)| = 1, then right

nilpotent
I Nilpotent type:

(B, rB) multipermutation
I Example: (C2n,D2n)
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MEASURING MULTIPERMUTATION

Definition
A skew brace (B,+, ◦)) is said to be multipermutation, if (B, rB)
is multipermutation.
Equivalently:
I B is right nilpotent of nilpotent type,
I The chain Socn(B) ends in B.

Here, Socn+1(B) is the pullback in B of Soc(B/Socn(B)) with

Soc(A) = ker λ ∩ Z(B,+).
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CENTRAL NILPOTENCY

Definition
Let B be a skew brace. Denote Ann(B) = Soc(B) ∩ Z(B, ◦).
Equivalently,

Ann(B) =
{
x ∈ Z(B,+) | λx = idB, λy(x) = x for all y ∈ B

}
.

Definition
Let B be a skew brace. One says that B is centrally nilpotent, if
the chain Annn(B) ends in B, where Annk+1(B) is pullback of
Ann(B/Annk(B)).
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DESCENDING SERIES

We have an ascending ideal series, what about descending?

Γn+1(B, I) = 〈B ∗ Γn(B, I), Γn(B, I) ∗ B, [Γn(B, I),B]+〉

is an ideal in B, if I is an ideal.

Proposition (Bonatto,Jedlicka)
Let B be a skew brace. Then, B is centrally nilpotent, if for some
positive integer n we have Γn(B,B) = 1.
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STRONGLY NILPOTENT
B[n] =

〈
B[i] ∗ B[n−i] | 1 ≤ i ≤ n

〉
.

Proposition (Smoktunowicz)
Let B be a skew brace. Then, B is strongly nilpotent if and only if
B is left and right nilpotent and (B, ◦) is nilpotent.
What if we account for additive commutator?

Γ[n](B) =
〈

Γ[i](B) ∗ Γ[n−i](B),
[
Γ[i](B), Γ[n−i](B)

]
+

〉
Proposition (Jespers, AVA, Vendramin)
Let B be a skew brace of nilpotent type. If B is centrally nilpotent,
then B is strongly centrally nilpotent. Moreover, B is strongly
nilpotent.
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NILPOTENCY CLASS

Both the chains Γn(B) and Γ[n](B) allow to define a notion of
nilpotency class of B.

Problem
I Can we relate the above nilpotency classes?
I Are there bounds using the additive/multiplicative

nilpotency class?
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FINITELY GENERATED

Proposition (Jespers, AVA, Vendramin)
Let B be a centrally nilpotent skew brace with ACC on sub skew
braces. TFAE
I B is finitely generated as a brace,
I (B,+) is finitely generated as a group,
I (B, ◦) is finitely generated as a group.

Vice versa, every finitely generated Centrally nilpotent skew
brace has ACC on sub skew braces.
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TORSION

What is torsion in a skew brace?

Proposition (Jespers, AVA, Vendramin)
Let B be a centrally nilpotent skew brace. Then T+(B) = T◦(B),
which is an ideal of B. Finite, if B is finitely generated.

Proposition (Jespers, AVA, Vendramin)
Let B be a centrally nilpotent skew brace. If T+(B) = 0. Then,
an = bn or na = nb implies a = b.
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