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Definition (Ganyushkin, Mazorchuk)
Let Θ be a simple oriented graph with n vertices. Then the corresponding
Hecke–Kiselman monoid HKΘ is the monoid generated by idempotents
x1, . . . , xn such that:

1) if the vertices i , j are not connected in Θ, then xixj = xjxi ,
2) if i , j are connected by an arrow i→ j in Θ, then xixjxi= xjxixj =

xixj .
If K is a field then K [HKΘ] denotes the corresponding monoid algebra,
called the Hecke–Kiselman algebra.

⇝ natural quotient of the 0-Hecke monoids

Theorem (Ganyushkin, Mazorchuk)
1) Monoid HKΘ is finite ⇐⇒ the graph Θ is acyclic.
2) Finite Hecke–Kiselman monoids are J -trivial, that is

HKΘ w HKΘ = HKΘ v HKΘ implies that w = v in HKΘ.
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Algebra K [Cn] associated to an oriented cycle

Monoid Cn for any n ⩾ 3 is given by the presentation

⟨x1, . . . , xn :x2
i = xi , xixi+1 = xixi+1xi = xi+1xixi+1 for i = 1, . . . , n,

xixj = xjxi for n − 1 > i − j > 1⟩

What is known about K [Cn]?
▶ (Denton) Cn is a J -trivial monoid.
▶ (Męcel, Okniński) K [Cn] is a PI-algebra of Gelfand–Kirillov

dimension one.
▶ (Okniński, W.) Algebra K [Cn] is Noetherian and semiprime.
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Useful tool: semigroups of matrix type

Definition
If S is a semigroup, A,B are nonempty sets and P = (pba) is a B × A -
matrix with entries in S0, then the semigroup of matrix type
M0(S,A,B; P) over S is the set of all matrices of size A × B with at
most one nonzero entry with the operation

M · N = M ◦ P ◦ N

for every matrices M and N, where ◦ is standard matrix multiplication.
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Ideal chain and matrix structures inside Cn

Theorem
Cn has a chain of ideals

∅ = In−2 ◁ In−3 ◁ · · · ◁ I0 ◁ I−1 ◁ Cn,

with the following properties
1) for i = 0, . . . , n − 2 there exist semigroups of matrix type

Mi = M0(Si ,Ai ,Bi ; Pi), such that Mi ⊂ Ii−1/Ii (we agree that
In−3/∅ = In−3 ∪ {θ}), where Si is the infinite cyclic semigroup, Pi is
a square symmetric matrix of size Bi × Ai and with coefficients in
S1

i ∪ {θ};
2) |Ai | = |Bi | =

( n
i+1

)
for every i = 0, . . . , n − 2;

3) for i = 1, . . . , n − 2 the sets (Ii−1/Ii) \ Mi are finite and Cn/I−1 is a
finite semigroup.
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Motivation: irreducible representations of finite monoids
Every finite monoid M admits a chain of principal ideals

∅ = Mk ◁Mk−1 ◁ · · · ◁M1 = M
such that each factor is either null semigroup or 0-simple semigroup,
which is isomorphic to M0(G ,X ,Y ; P), where G is a group.
Clifford–Munn–Ponizovskii theorem

1)
{

irreducible representations
}
↭

{
irreducible representations of

0-simple factors

}

2)

irreducible representations
of 0-simple semigroup

M0(G ,X ,Y ; P)

↭
{

irreducible representations of
the maximal subgroup G

}

Case of finite J -trivial monoids{
irreducible representations

of M

}
↭

{
idempotents of M

}
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Irreducible representations of the algebra K [Cn]

Theorem
Let φ : K [Cn] −→ Mj(K ) be an irreducible representation of the
Hecke–Kiselman algebra K [Cn] over an algebraically closed field K . If
φ(K [In−3]) ̸= 0 set i = n − 2. Otherwise take the minimal
i ∈ {−1, . . . , n − 3} such that φ(K [Ii ]) = 0.

1) If i ⩾ 0 and φ(K [Mi ]) ̸= 0, then the representation φ is induced by
a representation of K [Mi ].

2) If (i ⩾ 0 and φ(K [Mi ]) = 0) or i = −1, then the representation φ is
one-dimensional and induced by an idempotent e ∈ Ii−1 \ Ii or
e ∈ Cn \ I−1, respectively.

⇝ characterization of all idempotents of the monoid Cn is known
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Irreducible representations of K [Mi ]

Recall that Mi = M0(Si ,Ai ,Bi ; Pi), where Si is infinite cyclic semigroup
generated by si , Pi is a Bi × Ai matrix with coefficients in S1

i ∪ {θ}.

Mi ⇝ completely 0-simple closure cl(Mi) = M0(gr(si),Ai ,Bi ; Pi).

Theorem
Every irreducible representation of the infinite cyclic group gr(si) induces
a unique irreducible representation of Mi . It is induced by an irreducible
representation of cl(Mi).
Conversely, every irreducible representation of Mi comes from a
representation of the group gr(si), and can be uniquely extended to an
irreducible representation of cl(Mi).
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PI Hecke–Kiselman algebras

PI Hecke–Kiselman algebras (Męcel, Okniński)
Hecke–Kiselman algebra K [HKΘ] satisfies a polynomial identity if and
only if Θ does not contain two different cycles connected by an oriented
path of length k ⩾ 0.

The radical of PI Hecke–Kiselman algebra (Okniński, W.)
Let Θ′ be the subgraph of Θ obtained by deleting all arrows x → y that
are not contained in any cyclic subgraph of Θ.
The Jacobson radical J(K [HKΘ]) can be described. In particular

K [HKΘ]/J(K [HKΘ]) ∼= K [HKΘ′ ] ∼= K [HKΘ1 ] ⊗ · · · ⊗ K [HKΘm ],

where Θ1, . . . ,Θm are connected components of Θ′, and algebras
K [HKΘi ] are isomorphic to K ⊕ K or to the algebra
K [Cj ], for some j ⩾ 3, for all i = 1, . . . ,m.
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Irreducible representations of PI Hecke–Kiselman algebras

Theorem
Every irreducible representation of K [HKΘ] is of the form

K [HKΘ] → K [HKΘ1 ] ⊗ · · · ⊗ K [HKΘm ] →

Mr1(K ) ⊗ · · · ⊗ Mrm (K ) ≃−→ Mr1···rm (K ),

where
1) the first map is the natural epimorphism onto K [HKΘ]

/
J(K [HKΘ]),

2) the second homomorphism is ψ1 ⊗ · · · ⊗ ψm for some irreducible
representations ψi : K [HKΘi ] → Mri (K ), i = 1, . . . ,m.
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Thank you!
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