Irreducible representations of the Hecke-Kiselman algebras

Magdalena Wiertel
University of Warsaw, Poland

Blankenberge, June 2023
MM
of Mathematics, Informatics AND MECHANICS

Definition (Ganyushkin, Mazorchuk)

Let Θ be a simple oriented graph with n vertices. Then the corresponding Hecke-Kiselman monoid HK_{Θ} is the monoid generated by idempotents x_{1}, \ldots, x_{n} such that:

1) if the vertices i, j are not connected in Θ, then $x_{i} x_{j}=x_{j} x_{i}$,
2) if i, j are connected by an arrow $i \rightarrow j$ in Θ, then $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=$ $x_{i} x_{j}$.
If K is a field then $K\left[\mathrm{HK}_{\Theta}\right]$ denotes the corresponding monoid algebra, called the Hecke-Kiselman algebra.
\rightsquigarrow natural quotient of the 0 -Hecke monoids

Definition (Ganyushkin, Mazorchuk)

Let Θ be a simple oriented graph with n vertices. Then the corresponding Hecke-Kiselman monoid HK_{Θ} is the monoid generated by idempotents x_{1}, \ldots, x_{n} such that:

1) if the vertices i, j are not connected in Θ, then $x_{i} x_{j}=x_{j} x_{i}$,
2) if i, j are connected by an arrow $i \rightarrow j$ in Θ, then $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=$ $x_{i} x_{j}$.
If K is a field then $K\left[\mathrm{HK}_{\Theta}\right]$ denotes the corresponding monoid algebra, called the Hecke-Kiselman algebra.
\rightsquigarrow natural quotient of the 0 -Hecke monoids
Theorem (Ganyushkin, Mazorchuk)
3) Monoid HK_{Θ} is finite \Longleftrightarrow the graph Θ is acyclic.
4) Finite Hecke-Kiselman monoids are \mathcal{J}-trivial, that is $\mathrm{HK}_{\Theta} w \mathrm{HK}_{\Theta}=\mathrm{HK}_{\Theta} v \mathrm{HK}_{\Theta}$ implies that $w=v$ in HK_{Θ}.

Algebra $K\left[C_{n}\right]$ associated to an oriented cycle

Monoid C_{n} for any $n \geqslant 3$ is given by the presentation

$$
\begin{gathered}
\left\langle x_{1}, \ldots, x_{n}: x_{i}^{2}=x_{i}, x_{i} x_{i+1}=x_{i} x_{i+1} x_{i}=x_{i+1} x_{i} x_{i+1} \text { for } i=1, \ldots, n,\right. \\
\left.x_{i} x_{j}=x_{j} x_{i} \text { for } n-1>i-j>1\right\rangle
\end{gathered}
$$

What is known about $K\left[C_{n}\right]$?

- (Denton) C_{n} is a \mathcal{J}-trivial monoid.
- (Męcel, Okniński) $K\left[C_{n}\right]$ is a Pl-algebra of Gelfand-Kirillov dimension one.
- (Okniński, W.) Algebra $K\left[C_{n}\right]$ is Noetherian and semiprime.

Useful tool: semigroups of matrix type

Definition

If S is a semigroup, A, B are nonempty sets and $P=\left(p_{b a}\right)$ is a $B \times A$ matrix with entries in S^{0}, then the semigroup of matrix type $\mathcal{M}^{0}(S, A, B ; P)$ over S is the set of all matrices of size $A \times B$ with at most one nonzero entry with the operation

$$
M \cdot N=M \circ P \circ N
$$

for every matrices M and N, where \circ is standard matrix multiplication.

Ideal chain and matrix structures inside C_{n}

Theorem
C_{n} has a chain of ideals

$$
\emptyset=I_{n-2} \triangleleft I_{n-3} \triangleleft \cdots \triangleleft I_{0} \triangleleft I_{-1} \triangleleft C_{n}
$$

with the following properties

1) for $i=0, \ldots, n-2$ there exist semigroups of matrix type $M_{i}=\mathcal{M}^{0}\left(S_{i}, A_{i}, B_{i} ; P_{i}\right)$, such that $M_{i} \subset I_{i-1} / I_{i}$ (we agree that $I_{n-3} / \emptyset=I_{n-3} \cup\{\theta\}$), where S_{i} is the infinite cyclic semigroup, P_{i} is a square symmetric matrix of size $B_{i} \times A_{i}$ and with coefficients in $S_{i}^{1} \cup\{\theta\} ;$
2) $\left|A_{i}\right|=\left|B_{i}\right|=\binom{n}{i+1}$ for every $i=0, \ldots, n-2$;
3) for $i=1, \ldots, n-2$ the sets $\left(I_{i-1} / I_{i}\right) \backslash M_{i}$ are finite and C_{n} / I_{-1} is a finite semigroup.

Motivation: irreducible representations of finite monoids

Every finite monoid M admits a chain of principal ideals

$$
\emptyset=M_{k} \triangleleft M_{k-1} \triangleleft \cdots \triangleleft M_{1}=M
$$

such that each factor is either null semigroup or 0 -simple semigroup, which is isomorphic to $\mathcal{M}^{0}(G, X, Y ; P)$, where G is a group.
Clifford-Munn-Ponizovskii theorem

1) $\{$ irreducible representations $\} \leftrightarrow \leadsto\left\{\begin{array}{c}\text { irreducible representations of } \\ 0 \text {-simple factors }\end{array}\right\}$
2) $\left\{\begin{array}{c}\text { irreducible representations } \\ \text { of } 0 \text {-simple semigroup } \\ \mathcal{M}^{0}(G, X, Y ; P)\end{array}\right\} \sim\left\{\begin{array}{c}\text { irreducible representations of } \\ \text { the maximal subgroup } G\end{array}\right\}$

Case of finite \mathcal{J}-trivial monoids

$$
\left\{\begin{array}{c}
\text { irreducible representations } \\
\text { of } M
\end{array}\right\} \leftrightarrow \rightsquigarrow\{\text { idempotents of } M\}
$$

Irreducible representations of the algebra $K\left[C_{n}\right]$

Theorem

Let $\varphi: K\left[C_{n}\right] \longrightarrow M_{j}(K)$ be an irreducible representation of the Hecke-Kiselman algebra $K\left[C_{n}\right]$ over an algebraically closed field K. If $\varphi\left(K\left[I_{n-3}\right]\right) \neq 0$ set $i=n-2$. Otherwise take the minimal
$i \in\{-1, \ldots, n-3\}$ such that $\varphi\left(K\left[I_{i}\right]\right)=0$.

1) If $i \geqslant 0$ and $\varphi\left(K\left[M_{i}\right]\right) \neq 0$, then the representation φ is induced by a representation of $K\left[M_{i}\right]$.
2) If $\left(i \geqslant 0\right.$ and $\left.\varphi\left(K\left[M_{i}\right]\right)=0\right)$ or $i=-1$, then the representation φ is one-dimensional and induced by an idempotent $e \in I_{i-1} \backslash I_{i}$ or $e \in C_{n} \backslash I_{-1}$, respectively.
\rightsquigarrow characterization of all idempotents of the monoid C_{n} is known

Irreducible representations of $K\left[M_{i}\right]$

Recall that $M_{i}=\mathcal{M}^{0}\left(S_{i}, A_{i}, B_{i} ; P_{i}\right)$, where S_{i} is infinite cyclic semigroup generated by s_{i}, P_{i} is a $B_{i} \times A_{i}$ matrix with coefficients in $S_{i}^{1} \cup\{\theta\}$.

$$
M_{i} \rightsquigarrow \text { completely } 0 \text {-simple closure } c l\left(M_{i}\right)=\mathcal{M}^{0}\left(\operatorname{gr}\left(s_{i}\right), A_{i}, B_{i} ; P_{i}\right) .
$$

Theorem

Every irreducible representation of the infinite cyclic group gr $\left(s_{i}\right)$ induces a unique irreducible representation of M_{i}. It is induced by an irreducible representation of $c l\left(M_{i}\right)$.
Conversely, every irreducible representation of M_{i} comes from a representation of the group $\operatorname{gr}\left(s_{i}\right)$, and can be uniquely extended to an irreducible representation of $c l\left(M_{i}\right)$.

PI Hecke-Kiselman algebras

PI Hecke-Kiselman algebras (Męcel, Okniński)
Hecke-Kiselman algebra $K\left[\mathrm{HK}_{\ominus}\right]$ satisfies a polynomial identity if and only if Θ does not contain two different cycles connected by an oriented path of length $k \geqslant 0$.

PI Hecke-Kiselman algebras

PI Hecke-Kiselman algebras (Męcel, Okniński)
Hecke-Kiselman algebra $K\left[\mathrm{HK}_{\Theta}\right]$ satisfies a polynomial identity if and only if Θ does not contain two different cycles connected by an oriented path of length $k \geqslant 0$.

The radical of PI Hecke-Kiselman algebra (Okniński, W.)
Let Θ^{\prime} be the subgraph of Θ obtained by deleting all arrows $x \rightarrow y$ that are not contained in any cyclic subgraph of Θ.
The Jacobson radical $J\left(K\left[\mathrm{HK}_{\Theta}\right]\right)$ can be described. In particular

$$
K\left[\mathrm{HK}_{\Theta}\right] / J\left(K\left[\mathrm{HK}_{\Theta}\right]\right) \cong K\left[\mathrm{HK}_{\Theta^{\prime}}\right] \cong K\left[\mathrm{HK}_{\Theta_{1}}\right] \otimes \cdots \otimes K\left[\mathrm{HK}_{\Theta_{m}}\right],
$$

where $\Theta_{1}, \ldots, \Theta_{m}$ are connected components of Θ^{\prime}, and algebras $K\left[\mathrm{HK}_{\Theta_{i}}\right]$ are isomorphic to $K \oplus K$ or to the algebra $K\left[C_{j}\right]$, for some $j \geqslant 3$, for all $i=1, \ldots, m$.

Irreducible representations of PI Hecke-Kiselman algebras

Theorem
Every irreducible representation of $K\left[\mathrm{HK}_{\Theta}\right]$ is of the form

$$
\begin{aligned}
K\left[H K_{\Theta}\right] \rightarrow K\left[\mathrm{HK}_{\Theta_{1}}\right] & \otimes \cdots \mathbb{} \cdot\left[\mathrm{HK}_{\Theta_{m}}\right] \rightarrow \\
& M_{r_{1}}(K) \otimes \cdots \otimes M_{r_{m}}(K) \xrightarrow{\leftrightharpoons} M_{r_{1} \cdots r_{m}}(K),
\end{aligned}
$$

where

1) the first map is the natural epimorphism onto $K\left[\mathrm{HK}_{\Theta}\right] / J\left(K\left[\mathrm{HK}_{\Theta}\right]\right)$,
2) the second homomorphism is $\psi_{1} \otimes \cdots \otimes \psi_{m}$ for some irreducible representations $\psi_{i}: K\left[\mathrm{HK}_{\Theta_{i}}\right] \rightarrow M_{r_{i}}(K), i=1, \ldots, m$.

References

D11 T. Denton, Excursions into Algebra and Combinatorics at $\mathrm{q}=0, \mathrm{PhD}$ thesis, University of California, Davis (2011), arXiv: 1108.4379.
GM11 O. Ganyushkin and V. Mazorchuk, On Kiselman quotients of 0-Hecke monoids, Int. Electron. J. Algebra 10 (2011), 174-191.
MO19 A. Męcel, J. Okniński, Growth alternative for Hecke-Kiselman monoids, Publicacions Matemàtiques 63 (2019), 219-240.
OW20 J. Okniński, M. Wiertel, Combinatorics and structure of Hecke-Kiselman algebras, Communications in Contemporary Mathematics 22, No. 07 (2020), 2050022.
OW20r J. Okniński, M. Wiertel, M. On the radical of a Hecke-Kiselman algebra, Algebras and Represent. Theory, 24 (2021), 1431-1440.
S16 B. Steinberg, Representation Theory of Finite Monoids, Springer (2016).
W21 M. Wiertel, Irreducible representations of Hecke-Kiselman monoids, Linear Algebra and its Applications, 640, 12-33 (2022).

Thank you!

