Duality structures on tensor categories coming from vertex operator algebras

Simon Wood
Cardiff University and Hamburg University

Joint work with Robert Allen, Jürgen Fuchs, Simon Lentner, Christoph Schweigert arXiv:2107.05718, 2306.XXXX

Groups, Rings and the Yang-Baxter equation 2023

Overview

(1) Vertex (operator) algebras and commutative algebras
(2) Tensor products
(3) Duality structures

Definition: Vertex algebra (VA)

Data:

- \mathbb{C} vector space V
- field map
$Y_{z}: V \otimes V \rightarrow V(z)$
- vacuum vector $\Omega \in V$.

Axioms:

- vacuum axiom:

$$
\begin{aligned}
& Y_{z}(\Omega \otimes-)=\mathrm{id}_{V} \text { and } \\
& Y_{z}(A \otimes \Omega)=A+z V \llbracket z \rrbracket, \forall A \in V
\end{aligned}
$$

- locality: $\forall A, B \in V, \exists n \in \mathbb{N}$

$$
(z-w)^{n}\left[Y_{z}(A \otimes-), Y_{w}(B \otimes-)\right]=0
$$

Consequence/Proposition

- There exists a translation operator $T: V \rightarrow V$, such that $T \Omega=0$ and $\left[T, Y_{z}\right]=\partial_{z} Y_{z}$
- For all $A, B, C \in V$

$$
\begin{array}{r}
Y_{z}\left(A \otimes Y_{w}(B \otimes C)\right) \in V(z)(w) \\
Y_{w}\left(B \otimes Y_{z}(A \otimes C)\right) \in V(w)(z) \\
Y_{w}\left(Y_{z-w}(A \otimes B) \otimes C\right) \in V(w)(z-w)
\end{array}
$$

are expansions of same element in $V \llbracket z, w \rrbracket\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$.

Example: Heisenberg vertex algebra

- Heisenberg Lie algebra: $\mathfrak{h}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} a_{n} \oplus \mathbb{C} 1$ with 1 central and relations $\left[a_{m}, a_{n}\right]=m \delta_{m, n} \mathbf{1}$.
- Fock space (h Verma module), $F_{\lambda}=\mathbb{C}\left[a_{-n}: n \geq 1\right]|\lambda\rangle$, where $a_{0}=\lambda \mathrm{id}, a_{n} / n=\partial_{a_{-n}}, n \geq 1$.
- The assignments and recursions
$|0\rangle \otimes-\mapsto \mathrm{id}_{F_{0}}, \quad a_{-1}|0\rangle \otimes-\mapsto \sum_{i \in \mathbb{Z}} a_{i} z^{-i-1}=a(z)$,
$a_{-n}|0\rangle \otimes-\mapsto \frac{\partial^{n-1}}{(n-1)!} a(z) \otimes-$,
$a_{-n} v \otimes-\mapsto\left(\frac{\frac{2}{}_{n-1}^{(n-1)!}}{(n)}(z)\right)_{r} Y_{z}(v \otimes-)+Y_{z}\left(v \otimes\left(\frac{\partial^{n-1}}{(n-1)!} a(z)\right)_{\mathrm{p}}-\right)$.
define a vertex algebra on F_{0} with vacuum vector $|0\rangle$.

Definition: Vertex operator algebra (VOA)/ conformal vertex algebra

A vertex operator algebra is a vertex algebra (V, Y, Ω, T) admiting a conformal vector $\omega \in V$ satsifying

- Virasoro algebra relations: $Y_{z}(\omega \otimes-)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}$

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0},
$$

with $c \in \mathbb{C}$, central charge.

- Non-negative integral conformal grading:

$$
V=\bigoplus_{n=0}^{\infty} V_{n}, V_{n}=\left\{v \in V \mid\left(L_{0}-n\right) v=0\right\} .
$$

- Conformal derivation: $L_{-1}=T$.

Example: Heisenberg vertex operator algebra

Consider the vertex algebra $\left(F_{0}, Y\right)$ from before.

- For $\rho \in \mathbb{C}$, the vector
$\omega_{\rho}=\left(\frac{1}{2} a_{-1}^{2}+\rho a_{-2}\right)|0\rangle \mapsto \frac{1}{2}\left(a(z)_{\mathrm{r}} a(z)+a(Z) a(z)_{\mathrm{p}}\right)+\rho \partial a(z)$
is conformal.
- The central charge of the resulting Virasoro algebra is $c_{\rho}=1-12 \rho^{2}$.
- The conformal grading on F_{0} assigns grade 0 to $|0\rangle$ and grade $-n$ to a_{n}.

Recap

- Vertex algebras are essentially associative commutative unital \mathbb{C}-algebras with a derivation.
- Fields $Y_{z}: V \otimes V \rightarrow V(z)$ are essentially an action of V on itself.
- Where you have commutativie algebras, you have modules!

Definition: Vertex algebra module

Let (V, Ω, T, Y) be a vertex algebra. A V-module is a pair $\left(M, Y^{M}\right): M$ a vector space and $Y_{z}^{M}: V \otimes M \rightarrow M(z)$ a V-action, that is,

- $Y_{z}^{M}(\Omega \otimes-)=\operatorname{id}_{M}$
- For all $A, B \in V$ and $C \in M$ the expansions
$Y_{z}^{M}\left(A \otimes Y_{w}^{M}(B \otimes C)\right) \in M(z)(w)$
$Y_{w}^{M}\left(B \otimes Y_{z}^{M}(A \otimes C)\right) \in M(w)(z)$
$Y_{w}^{M}\left(Y_{z-w}(A \otimes B) \otimes C\right) \in M(w)(z-w)$
can be identified in $M[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$.
Many additional assumtions can be added to the above definition. E.g. bounded conformal weights, finite weight spaces, semi simplicity, etc.

Example: Heisenberg modules

- Recall the Heisenberg algebra \mathfrak{h} and Fock spaces F_{λ} from before.
- For $\lambda \in \mathbb{C}$, the Fock space F_{λ} is a $\left(F_{0}, Y\right)$-module with the action defined by the same formula, e.g. $Y_{z}^{F_{\lambda}}\left(a_{-1}|0\rangle \otimes|\lambda\rangle\right)=a(z)|\lambda\rangle$.

Duals of modules

Definition: the dual of a module

Let (V, Y, Ω, ω) be a vertex operator algebra and $\left(M, Y^{M}\right), M=\bigoplus_{n} M_{n}$ a module. Then $\left(M^{\prime}, Y^{M^{\prime}}\right)$

- $M^{\prime}=\bigoplus_{n} \operatorname{Hom}_{\mathbb{C}}\left(M_{n}, \mathbb{C}\right)$,
- $\left\langle Y_{z}^{M^{\prime}}(v \otimes \mu), m\right\rangle=\left\langle\mu, Y_{z^{-1}}^{M}\left(e^{z L_{1}}\left(-z^{2}\right)^{L_{0}} v \otimes m\right)\right\rangle, v \in V, m \in M, \mu \in M^{\prime}$. is again a (V, Y)-module.

Heisenberg example:
For the choice of conformal vector ω_{ρ}, we have $F_{\lambda}^{\prime} \cong F_{2 \rho-\lambda}$

Motivating tensor products

- In quantum field theory all information is encoded in n-point correlation functions.
- In conformal quantum field theory (CFT) these correlation functions are V-multilinear functions.
- So we need to understand multilinear algebra for vertex algebras.
- This is also a natural question for commutative algebras.

Definition: Intertwining operator, V-bilinear maps

Let (V, Ω, Y, ω) be a vertex operator algebra and
$\left(M_{1}, Y^{M_{1}}\right),\left(M_{2}, Y^{M_{2}}\right),\left(M_{3}, Y^{M_{3}}\right)$ be V-modules. An intertwining operator of type $\left(\begin{array}{c}M_{1}, M_{2}\end{array}\right)$ is a map $\mathcal{Y}_{x}: M_{1} \otimes M_{2} \rightarrow M_{3}\{x\}$ such that for all $m_{i} \in M_{i}$

- $\mathcal{Y}_{x}\left(m_{1} \otimes m_{2}\right)$ truncates below.
- $\mathcal{Y}_{x}\left(L_{-1} m_{1} \otimes m_{2}\right)=\partial_{x} \mathcal{Y}_{x}\left(m_{1} \otimes m_{2}\right)$.
- The expansions $Y_{z}^{M_{3}}\left(A \otimes \mathcal{Y}_{x}\left(m_{1} \otimes m_{2}\right)\right) \sim \mathcal{Y}_{x}\left(Y_{z-x}^{M_{1}}\left(A \otimes m_{1}\right) \otimes m_{2}\right) \sim \mathcal{Y}_{x}\left(m_{1} \otimes Y_{z}^{M_{2}}\left(A \otimes m_{2}\right)\right)$ can be identified.

Observations:

- The field map Y is an intertwining operator of type $\binom{V}{V, V}$.
- The action Y^{M} is an intertwining operator of type $\left(\begin{array}{l}V, M\end{array}\right)$.
- Intertwining operators are V-bilinear maps. All intertwining operators of a given type form a vector space. The field map Y and the action Y^{M} have a distinguished normalisation due to $Y_{z}(\Omega \otimes-)=\mathrm{id}$.

Example: Heisenberg intertwining operators

Recall the Heisenberg Fock spaces $F_{\mu}, \mu \in \mathbb{C}$.
Then $\operatorname{dim}\binom{F_{\rho}}{F_{\mu}, F_{\nu}}=\delta_{\rho, \mu+\nu}$ for all $\rho, \mu, \nu \in \mathbb{C}$.
$\binom{F_{\mu}+\nu}{F_{\mu}, F_{\nu}}$ is spanned by

$$
\begin{array}{r}
\mathcal{Y}_{x}^{F_{\mu}, F_{\nu}}(p|\mu\rangle \otimes q|\nu\rangle)=x^{\mu \nu} S_{\mu} \prod_{m \geq 1} \exp \left(\mu \frac{a_{-m}}{m} x^{m}\right) Y_{x}^{F_{\nu}}(p|0\rangle \otimes-) \\
\cdot \prod_{m \geq 1} \exp \left(-\mu \frac{a_{m}}{m} x^{-m}\right) q|\nu\rangle
\end{array}
$$

where $S_{\mu}:|\nu\rangle \mapsto|\mu+\nu\rangle$ is the shift operator.

Tensor products pull multilinear algebra back to linear algebra!

Definition: Fusion product aka vertex algebra tensor product

Let (V, Ω, Y, ω) be a vertex operator algebra and $\left(M_{1}, Y^{M_{1}}\right),\left(M_{2}, Y^{M_{2}}\right)$ be V-modules. A fusion product is a triple ($M_{1} \boxtimes M_{2}, Y^{M_{1} \boxtimes M_{2}}, \mathcal{Y}^{M_{1}, M_{2}}$), where ($M_{1} \boxtimes M_{2}, Y^{M_{1} \boxtimes M_{2}}$) is a V-module and $\mathcal{Y}^{M_{1}, M_{2}}$ is an intertwining operator of type $\binom{M_{1} \boxtimes M_{2}}{M_{1}, M_{2}}$ such that the following universal property holds: For every V-module (X, Y^{X}) and intertwining operator \mathcal{Y}^{X} of type $\left(\begin{array}{c}M_{1}, M_{2}\end{array}\right)$

In contrast to linear algebra (or ring theory) constructing $M_{1} \boxtimes M_{2}$ and decomposing into a direct sum of indecomposable modules is extremely hard.

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures. [Huang-Lepowsky-Zhang]

- For module homomorphimsms $f: X \rightarrow Z, g: U \rightarrow W$, the morphism $f \boxtimes g$ is uniquely characterised by $(f \boxtimes g) \circ \mathcal{Y}^{X \boxtimes U}=\mathcal{Y}^{Z \boxtimes W} \circ(f \otimes g)$
- V is the tensor identity and the unit isomorphisms are uniquely characterised by
$\ell_{M}\left(\mathcal{Y}_{z}^{V, M}(a \otimes m)\right)=Y_{z}^{M}(a \otimes m)$ and
$r_{M}\left(\mathcal{Y}^{M, V}(m \otimes a)\right)=e^{z L_{-1}} Y_{-z}^{M}(a \otimes m)$.
- associativity isomorphisms (hardest part!)

$$
\begin{aligned}
& A_{M_{1}, M_{2}, M_{3}}\left(\mathcal{Y}_{x_{1}}^{M_{1}, M_{2} \boxtimes M_{3}}\left(m_{1} \otimes \mathcal{Y}_{x_{2}}^{M_{2}, M_{3}}\left(m_{2} \otimes m_{3}\right)\right)\right)= \\
& \mathcal{Y}_{x_{2}}^{M_{1} \boxtimes M_{2}, M_{3}}\left(\mathcal{Y}_{x_{1}-x_{2}}^{M_{1}, M_{2}}\left(m_{1} \otimes m_{2}\right) \otimes m_{3}\right)
\end{aligned}
$$

All analytic details hidden.

- Braiding isomorphisms uniquely characterised by

$$
c_{M_{1}, M_{2}}\left(\mathcal{Y}_{x}^{M_{1}, M_{2}}\left(m_{1} \otimes m_{2}\right)\right)=e^{x L_{-1}} \mathcal{Y}_{e^{i \pi} x}^{M_{2}, M_{1}}\left(m_{2} \otimes m_{1}\right)
$$

- If the vertex algebra V is conformal (a vertex operator algebra) and the modules are chosen to be compatible with this conformal structure, then there is also a twist $\theta_{M}=\left.e^{2 \pi i L_{0}}\right|_{M}$, which satisfies the balancing equation
$\theta_{M_{1} \boxtimes M_{2}}=c_{M_{1}, M_{2}} \circ c_{M_{2}, M_{1}} \circ\left(\theta_{M_{1}} \boxtimes \theta_{M_{2}}\right)$
- Tensor categories of vertex operator algebra modules depend only very weakly on the conformal structure. Only the twist and taking duals depend on the conformal structure.

Theorem [Huang, Moore-Seiberg]: The Verlinde Conjecture
Let (V, Y, Ω, ω) be a vertex operator algebra and Adm V be the category of admissible V-modules. If
(1) $\operatorname{dim} V_{0}=1, \operatorname{dim} V_{-n}=0, \operatorname{dim} V_{n}<\infty, n \in \mathbb{N}$,
(2) V is simple as a module over itself,
(3) $V \cong V^{*}$, self-dual,
(4) $\operatorname{dim} V / c_{2}(V)<\infty$, (a technical finiteness condition)
(5) $\operatorname{Adm}(V)$ is semisimple,
then Adm V is a modular tensor category. Further the action of the modular group on the category (which determines Verlinde's formula) is equal (after a renormalisation) to the action of the modular group on module characters.

Recap

- Vertex algebras are almost commutative unital algebras with derivations.
- The conformal vector is a choice/structure: there can be 0,1 or many.
- Vertex algebras admit modules. "Good choices" of module categories admit a tensor (aka fusion) product.
- With the exception of associators, the tensor structure morphisms follow from easy constructions.

Beyond modular tensor categories

The Verlinde conjecture is about vertex operator algebras that are maximally nice. There are many deviations from niceness.

- The category of modules need not be finite (the Heisenberg example is not finite).
- The category of modules need not be semisimple.
- The tensor product need not be left exact (there can be non-flat objects). [Gaberdiel-Runkel-SW]
- The first two deviations above can still be nice in the sense that they admit rigid duals. [Tsuchiya-SW,Allen-SW]
The third deviation is more fundamentally broken, as non-flat objects cannot have rigid duals.

Duals of intertwining operators

Proposition [HLZ]

Let \mathcal{Y} be an intertwining operator of type $\left(\begin{array}{c}M_{1}, M_{2}\end{array}\right)$. Then

$$
\begin{aligned}
& M_{1} \otimes M_{3}^{\prime} \rightarrow M_{2}^{\prime}\{x\} \\
& m \otimes \nu \mapsto \nu\left(\mathcal{X}_{x^{-1}}\left(e^{z L_{1}}\left(-z^{2}\right)^{L_{0}} m \otimes-\right)\right)
\end{aligned}
$$

is an intertwining operator of type $\binom{M_{1}, M_{3}^{\prime}}{M_{2}^{\prime}}$.
Thus $\binom{M_{3}}{M_{1}, M_{2}} \cong\binom{M_{2}^{\prime}}{M_{1}, M_{3}^{\prime}}$.

Remark

Intertwining operators of type $\binom{M_{3}}{M_{1}, M_{2}}$ should be thought of as Hom-spaces of the form $\operatorname{Hom}_{V}\left(M_{1} \boxtimes M_{2}, M_{3}\right)$.

Defininition: Grothendieck Verdier categories

Let \mathcal{C} be a monoidal (abelian linear) category.
(1) An object $K \in \mathcal{C}$ is called dualising, if for all $Y \in \mathcal{C}$ the functor $\operatorname{Hom}_{V}(-\otimes Y, K)$ is representable, that is,

$$
\operatorname{Hom}_{V}(X \otimes Y, K) \cong \operatorname{Hom}_{V}(X, G Y)
$$

and if the so defined contravariant functor $G: \mathcal{C} \rightarrow \mathcal{C}$ is an anti-equivalence.
(2) A monoidal category \mathcal{C} together with a choice of dualising object $K \in \mathcal{C}$ is called a Grothendieck-Verdier or $*$-autonomous category.

Theorem [Allen-Lentner-Schweigert-SW]
Let (V, Y) be a vertex operator algebra and let $\operatorname{Rep}(V)$ be choice of modules to which the HLZ tensor product theory applies which is in addition closed under taking duals. Then V^{\prime} is a dualising object for $\operatorname{Rep}(V)$ and $\left(\operatorname{Rep}(V), V^{\prime}\right)$ is a Grothendieck-Verdier category (actually ribbon Grothendieck-Verdier).

Why am I excited about this?

Grothendieck-Verdier categories have many appealing features

- The appear to be describe the natural duality structure of vertex operator algebra modules and the can accommodate all non-nice features mentioned previously.
- They admit two tensor products $X \otimes Y$ and $X \bullet Y=G\left(G^{-1} Y \otimes G^{-1} X\right)$, where \otimes is right exact and \bullet is left exact. In particular there are distributor morphisms
$\partial_{X, Y, Z}^{l}: X \otimes(Y \bullet Z) \rightarrow(X \otimes Y) \bullet Z, \quad \partial_{X, Y, Z}^{r}:(X \bullet Y) \otimes Z \rightarrow X \bullet(Y \otimes Z)$,
which need not be isomorphisms. [Fuchs-Schaumann-Schweigert-SW]
- \otimes admits inner Homs (right adjoints) and • admits inner coHoms (left adjoints which allow the construction of algebras and coalgebras (even Frobenius algebras) in \mathcal{C} (crucial for conformal field theory).

Thank you!

For further reading I

-

E. Frenkel and D. Ben-Zvi Vertex Algebras and Algebraic Curves. AMS, Mathematical Surveys and Monographs, Volume: 88, 2004.
围 Y-Z. Huang, J. Lepowsky, and L. Zhang. Logarithmic tensor product theory I-VIII. arXiv:1012.4193 [math.QA], arXiv:1012.4196 [math.QA], arXiv:1012.4197 [math.QA], arXiv:1012.4198 [math.QA], arXiv:1012.4199 [math.QA] , arXiv:1012.4202 [math.QA], arXiv:1110.1929 [math.QA], arXiv:1110.1931 [math.QA].
圊 Y-Z. Huang. Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math., 10:103-1054, 2008. arXiv: math/0406291
G. Moore and N. Seiberg. Classical and quantum conformal field theory. Comm. Math. Phys., 123:177-254, 1989.

For further reading II

R R .Allen and S. Wood. Bosonic ghostbusting - the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion, 2020. arXiv:2001.05986 [math.QA]
R M .Gaberdiel, I. Runkel, and S. Wood. Fusion rules and boundary conditions in the c = 0 triplet model. J. Phys., A42:325403, 2009. arXiv:0905.0916 [hep-th].
(A. Tsuchiya and S.Wood. The tensor structure on the representation category of the triplet algebra. J. Phys. A:46:445203, 2013. arXiv:1201.0419 [math.QA]
R. Allen, S. Lentner, C. Schweigert, and S. Wood, Duality structures for mod- ule categories of vertex operator algebras and the Feigin Fuchs boson, arXiv:2107.05718 [math.QA]
凅 J. Fuchs, G. Schaumann, C. Schweigert, S .Wood To appear

