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Overview
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Definition: Vertex algebra (VA)
Data:
• C vector space V
• field map

Yz : V ⊗ V → VLzM
• vacuum vector Ω ∈ V.

Axioms:
• vacuum axiom:

Yz(Ω⊗−) = idV and
Yz(A⊗ Ω) = A + zVJzK, ∀A ∈ V
• locality: ∀A,B ∈ V, ∃n ∈ N

(z− w)n[Yz(A⊗−),Yw(B⊗−)] = 0

Consequence/Proposition
• There exists a translation operator T : V → V,

such that TΩ = 0 and [T,Yz] = ∂zYz

• For all A,B,C ∈ V

Yz(A⊗ Yw(B⊗ C)) ∈ VLzMLwM
Yw(B⊗ Yz(A⊗ C)) ∈ VLwMLzM

Yw(Yz−w(A⊗ B)⊗ C) ∈ VLwMLz− wM

are expansions of same element in VJz,wK[z−1,w−1, (z− w)−1].
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Example: Heisenberg vertex algebra

• Heisenberg Lie algebra: h =
⊕

n∈ZCan ⊕ C1 with 1 central and
relations [am, an] = mδm,n1.
• Fock space (h Verma module), Fλ = C[a−n : n ≥ 1] |λ〉, where

a0 = λid, an/n = ∂a−n , n ≥ 1.
• The assignments and recursions
|0〉 ⊗ − 7→ idF0 , a−1 |0〉 ⊗ − 7→

∑
i∈Z aiz−i−1 = a(z),

a−n |0〉 ⊗ − 7→ ∂n−1

(n−1)!a(z)⊗−,

a−nv⊗− 7→
(
∂n−1

(n−1)!a(z)
)

r
Yz(v⊗−) + Yz

(
v⊗

(
∂n−1

(n−1)!a(z)
)

p
−
)

.

define a vertex algebra on F0 with vacuum vector |0〉.
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Definition: Vertex operator algebra (VOA)/ conformal vertex
algebra

A vertex operator algebra is a vertex algebra (V,Y,Ω,T) admiting a
conformal vector ω ∈ V satsifying
• Virasoro algebra relations: Yz(ω ⊗−) =

∑
n∈Z Lnz−n−2

[Lm,Ln] = (m− n)Lm+n +
c

12
(m3 − m)δm+n,0 ,

with c ∈ C, central charge.
• Non-negative integral conformal grading:

V =

∞⊕
n=0

Vn, Vn = {v ∈ V|(L0 − n)v = 0}.

• Conformal derivation: L−1 = T.
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Example: Heisenberg vertex operator algebra

Consider the vertex algebra (F0,Y) from before.
• For ρ ∈ C, the vector
ωρ =

(1
2 a2
−1 + ρa−2

)
|0〉 7→ 1

2 (a(z)ra(z) + a(Z)a(z)p) + ρ∂a(z)
is conformal.
• The central charge of the resulting Virasoro algebra is

cρ = 1− 12ρ2.
• The conformal grading on F0 assigns grade 0 to |0〉 and grade −n

to an.
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Recap

• Vertex algebras are essentially associative commutative unital
C-algebras with a derivation.
• Fields Yz : V ⊗ V → VLzM are essentially an action of V on itself.
• Where you have commutativie algebras, you have modules!
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Definition: Vertex algebra module
Let (V,Ω,T,Y) be a vertex algebra. A V-module is a pair (M,YM): M a
vector space and YM

z : V ⊗M → MLzM a V-action, that is,
• YM

z (Ω⊗−) = idM

• For all A,B ∈ V and C ∈ M the expansions
YM

z (A⊗ YM
w (B⊗ C)) ∈ MLzMLwM

YM
w (B⊗ YM

z (A⊗ C)) ∈ MLwMLzM
YM

w (Yz−w(A⊗ B)⊗ C) ∈ MLwMLz− wM
can be identified in M[[z,w]][z−1,w−1, (z− w)−1].

Many additional assumtions can be added to the above definition. E.g.
bounded conformal weights, finite weight spaces, semi simplicity, etc.
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Example: Heisenberg modules

• Recall the Heisenberg algebra h and Fock spaces Fλ from before.
• For λ ∈ C, the Fock space Fλ is a (F0,Y)-module with the action

defined by the same formula, e.g.
YFλ

z (a−1 |0〉 ⊗ |λ〉) = a(z) |λ〉.
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Duals of modules

Definition: the dual of a module
Let (V,Y,Ω, ω) be a vertex operator algebra and (M,YM), M =

⊕
n Mn

a module. Then (M′,YM′)

• M′ =
⊕

n HomC(Mn,C),
• 〈YM′

z (v⊗ µ),m〉 = 〈µ,YM
z−1(ezL1(−z2)L0v⊗ m)〉, v ∈ V,m ∈ M, µ ∈ M′.

is again a (V,Y)-module.

Heisenberg example:
For the choice of conformal vector ωρ, we have F′λ ∼= F2ρ−λ
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Motivating tensor products

• In quantum field theory all information is encoded in n-point
correlation functions.
• In conformal quantum field theory (CFT) these correlation

functions are V-multilinear functions.
• So we need to understand multilinear algebra for vertex algebras.
• This is also a natural question for commutative algebras.
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Definition: Intertwining operator, V-bilinear maps
Let (V,Ω,Y, ω) be a vertex operator algebra and
(M1,YM1), (M2,YM2), (M3,YM3) be V-modules. An intertwining operator
of type

( M3
M1, M2

)
is a map Yx : M1⊗M2 → M3{x} such that for all mi ∈ Mi

• Yx(m1 ⊗ m2) truncates below.
• Yx(L−1m1 ⊗ m2) = ∂xYx(m1 ⊗ m2).
• The expansions

YM3
z (A⊗Yx(m1⊗m2)) ∼ Yx(YM1

z−x(A⊗m1)⊗m2) ∼ Yx(m1⊗YM2
z (A⊗m2))

can be identified.

Observations:
• The field map Y is an intertwining operator of type

( V
V, V

)
.

• The action YM is an intertwining operator of type
( M

V, M

)
.

• Intertwining operators are V-bilinear maps. All intertwining
operators of a given type form a vector space. The field map Y
and the action YM have a distinguished normalisation due to
Yz(Ω⊗−) = id.
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Example: Heisenberg intertwining operators

Recall the Heisenberg Fock spaces Fµ, µ ∈ C.
Then dim

( Fρ
Fµ, Fν

)
= δρ,µ+ν for all ρ, µ, ν ∈ C.( Fµ+ν

Fµ, Fν

)
is spanned by

YFµ,Fν
x (p|µ〉 ⊗ q|ν〉) = xµνSµ

∏
m≥1

exp
(
µ

a−m

m
xm
)

YFν
x (p|0〉 ⊗ −)

·
∏
m≥1

exp
(
−µam

m
x−m

)
q|ν〉,

where Sµ : |ν〉 7→ |µ+ ν〉 is the shift operator.
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Tensor products pull multilinear algebra back to linear algebra!

Definition: Fusion product aka vertex algebra tensor product
Let (V,Ω,Y, ω) be a vertex operator algebra and (M1,YM1), (M2,YM2)
be V-modules. A fusion product is a triple (M1 � M2,YM1�M2 ,YM1,M2),
where (M1 � M2,YM1�M2) is a V-module and YM1,M2 is an intertwining
operator of type

(M1�M2
M1, M2

)
such that the following universal property

holds: For every V-module (X,YX) and intertwining operator YX of type( X
M1,M2

)
M1 ⊗M2 M1 � M2{z}

X{z}

YM1,M2

YX
∃!f

In contrast to linear algebra (or ring theory) constructing M1 � M2 and
decomposing into a direct sum of indecomposable modules is
extremely hard.
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Well chosen categories of modules are tensor categories with respect
to � with the following structures. [Huang-Lepowsky-Zhang]

• For module homomorphimsms f : X → Z, g : U → W, the
morphism f � g is uniquely characterised by
(f � g) ◦ YX�U = YZ�W ◦ (f ⊗ g)

• V is the tensor identity and the unit isomorphisms are uniquely
characterised by
`M

(
YV,M

z (a⊗ m)
)

= YM
z (a⊗ m) and

rM
(
YM,V(m⊗ a)

)
= ezL−1YM

−z(a⊗ m).
• associativity isomorphisms (hardest part!)

AM1,M2,M3

(
YM1,M2�M3

x1 (m1 ⊗ YM2,M3
x2 (m2 ⊗ m3))

)
=

YM1�M2,M3
x2 (YM1,M2

x1−x2
(m1 ⊗ m2)⊗ m3)

All analytic details hidden.
• Braiding isomorphisms uniquely characterised by

cM1,M2

(
YM1,M2

x (m1 ⊗ m2)
)

= exL−1YM2,M1
eiπx (m2 ⊗ m1)
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• If the vertex algebra V is conformal (a vertex operator algebra)
and the modules are chosen to be compatible with this conformal
structure, then there is also a twist θM = e2πiL0 |M, which satisfies
the balancing equation
θM1�M2 = cM1,M2 ◦ cM2,M1 ◦ (θM1 � θM2)

• Tensor categories of vertex operator algebra modules depend
only very weakly on the conformal structure. Only the twist and
taking duals depend on the conformal structure.
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Theorem [Huang, Moore-Seiberg]: The Verlinde Conjecture
Let (V,Y,Ω, ω) be a vertex operator algebra and Adm V be the
category of admissible V-modules. If

1 dim V0 = 1,dim V−n = 0, dim Vn <∞, n ∈ N,
2 V is simple as a module over itself,
3 V ∼= V∗, self-dual,
4 dim V/c2(V) <∞, (a technical finiteness condition)
5 Adm(V) is semisimple,

then Adm V is a modular tensor category. Further the action of the
modular group on the category (which determines Verlinde’s formula)
is equal (after a renormalisation) to the action of the modular group on
module characters.
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Recap

• Vertex algebras are almost commutative unital algebras with
derivations.
• The conformal vector is a choice/structure: there can be 0, 1 or

many.
• Vertex algebras admit modules. “Good choices” of module

categories admit a tensor (aka fusion) product.
• With the exception of associators, the tensor structure morphisms

follow from easy constructions.

(Simon Wood) Duality from VOAs GRYBE 2023 18 / 25



Beyond modular tensor categories

The Verlinde conjecture is about vertex operator algebras that are
maximally nice. There are many deviations from niceness.
• The category of modules need not be finite (the Heisenberg

example is not finite).
• The category of modules need not be semisimple.
• The tensor product need not be left exact (there can be non-flat

objects). [Gaberdiel-Runkel-SW]

• The first two deviations above can still be nice in the sense that
they admit rigid duals. [Tsuchiya-SW,Allen-SW]
The third deviation is more fundamentally broken, as non-flat
objects cannot have rigid duals.
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Duals of intertwining operators

Proposition [HLZ]

Let Y be an intertwining operator of type
( M3

M1, M2

)
. Then

M1 ⊗M′3 → M′2{x}
m⊗ ν 7→ ν(Yx−1(ezL1(−z2)L0m⊗−))

is an intertwining operator of type
( M′2

M1, M′3

)
.

Thus
( M3

M1, M2

) ∼= ( M′2
M1, M′3

)
.

Remark
Intertwining operators of type

( M3
M1, M2

)
should be thought of as

Hom-spaces of the form HomV(M1 � M2,M3).
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Defininition: Grothendieck Verdier categories
Let C be a monoidal (abelian linear) category.

1 An object K ∈ C is called dualising, if for all Y ∈ C the functor
HomV(−⊗ Y,K) is representable, that is,

HomV(X ⊗ Y,K) ∼= HomV(X,GY),

and if the so defined contravariant functor G : C → C is an
anti-equivalence.

2 A monoidal category C together with a choice of dualising object
K ∈ C is called a Grothendieck-Verdier or ∗-autonomous category.

Theorem [Allen-Lentner-Schweigert-SW]

Let (V,Y) be a vertex operator algebra and let Rep(V) be choice of
modules to which the HLZ tensor product theory applies which is in
addition closed under taking duals. Then V ′ is a dualising object for
Rep(V) and (Rep(V),V ′) is a Grothendieck-Verdier category (actually
ribbon Grothendieck-Verdier).
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Why am I excited about this?

Grothendieck-Verdier categories have many appealing features
• The appear to be describe the natural duality structure of vertex

operator algebra modules and the can accommodate all non-nice
features mentioned previously.
• They admit two tensor products X ⊗ Y and

X • Y = G(G−1Y ⊗G−1X), where ⊗ is right exact and • is left exact.
In particular there are distributor morphisms

∂l
X,Y,Z : X⊗(Y •Z)→ (X⊗Y)•Z, ∂r

X,Y,Z : (X•Y)⊗Z → X•(Y⊗Z),

which need not be isomorphisms. [Fuchs-Schaumann-Schweigert-SW]

• ⊗ admits inner Homs (right adjoints) and • admits inner coHoms
(left adjoints which allow the construction of algebras and
coalgebras (even Frobenius algebras) in C (crucial for conformal
field theory).
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Thank you!
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