Duality structures on tensor categories coming from vertex operator algebras

Simon Wood Cardiff University and Hamburg University

Joint work with Robert Allen, Jürgen Fuchs, Simon Lentner, Christoph Schweigert arXiv:2107.05718, 2306.XXXX

Groups, Rings and the Yang-Baxter equation 2023

Overview

1 Vertex (operator) algebras and commutative algebras

2 Tensor products

Ouality structures

Definition: Vertex algebra (VA) Data:

- C vector space V
- field map $Y_{z}: V \otimes V \to V(z)$
- vacuum vector $\Omega \in V$.

Axioms:

- vacuum axiom: $Y_{z}(\Omega \otimes -) = \mathrm{id}_{V}$ and $Y_{\tau}(A \otimes \Omega) = A + zV[\![z]\!], \ \forall A \in V$
- locality: $\forall A, B \in V, \exists n \in \mathbb{N}$ $(z-w)^n[Y_z(A\otimes -), Y_w(B\otimes -)]=0$

Consequence/Proposition

- There exists a translation operator $T: V \to V$, such that $T\Omega = 0$ and $[T, Y_z] = \partial_z Y_z$
- For all $A, B, C \in V$

 $Y_{z}(A \otimes Y_{w}(B \otimes C)) \in V(z)(w)$ $Y_w(B \otimes Y_z(A \otimes C)) \in V(w)(z)$ $Y_w(Y_{z-w}(A \otimes B) \otimes C) \in V(w)(z-w)$

are expansions of same element in $V[z, w][z^{-1}, w^{-1}, (z-w)^{-1}]$.

Example: Heisenberg vertex algebra

- Heisenberg Lie algebra: $\mathfrak{h} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}a_n \oplus \mathbb{C}1$ with 1 central and relations $[a_m, a_n] = m\delta_{m,n}\mathbf{1}$.
- Fock space (h Verma module), $F_{\lambda} = \mathbb{C}[a_{-n} : n \ge 1] |\lambda\rangle$, where $a_0 = \lambda \text{id}, a_n/n = \partial_{a_{-n}}, n \ge 1$.
- The assignments and recursions $|0\rangle \otimes - \mapsto \mathrm{id}_{F_0}, \quad a_{-1} |0\rangle \otimes - \mapsto \sum_{i \in \mathbb{Z}} a_i z^{-i-1} = a(z),$ $a_{-n} |0\rangle \otimes - \mapsto \frac{\partial^{n-1}}{(n-1)!} a(z) \otimes -,$ $a_{-n} v \otimes - \mapsto \left(\frac{\partial^{n-1}}{(n-1)!} a(z)\right)_r Y_z(v \otimes -) + Y_z\left(v \otimes \left(\frac{\partial^{n-1}}{(n-1)!} a(z)\right)_p\right).$ define a vertex algebra on F_0 with vacuum vector $|0\rangle$.

Definition: Vertex operator algebra (VOA)/ conformal vertex algebra

A vertex operator algebra is a vertex algebra (V, Y, Ω, T) admiting a conformal vector $\omega \in V$ satsifying

• Virasoro algebra relations: $Y_z(\omega \otimes -) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0} ,$$

with $c \in \mathbb{C}$, central charge.

Non-negative integral conformal grading:

$$V = \bigoplus_{n=0}^{\infty} V_n, \ V_n = \{v \in V | (L_0 - n)v = 0\}.$$

• Conformal derivation: $L_{-1} = T$.

Example: Heisenberg vertex operator algebra

Consider the vertex algebra (F_0, Y) from before.

- For $\rho \in \mathbb{C}$, the vector $\omega_{\rho} = \left(\frac{1}{2}a_{-1}^{2} + \rho a_{-2}\right)|0\rangle \mapsto \frac{1}{2}\left(a(z)_{r}a(z) + a(Z)a(z)_{p}\right) + \rho\partial a(z)$ is conformal.
- The central charge of the resulting Virasoro algebra is $c_{\rho} = 1 12\rho^2$.
- The conformal grading on F_0 assigns grade 0 to $|0\rangle$ and grade -n to a_n .

Recap

- Vertex algebras are essentially associative commutative unital C-algebras with a derivation.
- Fields $Y_z: V \otimes V \to V(z)$ are essentially an action of V on itself.
- Where you have commutativie algebras, you have modules!

Definition: Vertex algebra module

Let (V, Ω, T, Y) be a vertex algebra. A *V*-module is a pair (M, Y^M) : *M* a vector space and $Y_z^M : V \otimes M \to M(z)$ a *V*-action, that is,

• $Y_z^M(\Omega \otimes -) = \mathrm{id}_M$

• For all $A, B \in V$ and $C \in M$ the expansions $Y_z^M(A \otimes Y_w^M(B \otimes C)) \in M(z)(w)$ $Y_w^M(B \otimes Y_z^M(A \otimes C)) \in M(w)(z)$ $Y_w^M(Y_{z-w}(A \otimes B) \otimes C) \in M(w)(z-w)$ can be identified in $M[[z,w]][z^{-1},w^{-1},(z-w)^{-1}]$.

Many additional assumtions can be added to the above definition. E.g. bounded conformal weights, finite weight spaces, semi simplicity, etc.

Example: Heisenberg modules

- Recall the Heisenberg algebra \mathfrak{h} and Fock spaces F_{λ} from before.
- For $\lambda \in \mathbb{C}$, the Fock space F_{λ} is a (F_0, Y) -module with the action defined by the same formula, e.g. $Y_z^{F_{\lambda}}(a_{-1} | 0 \rangle \otimes | \lambda \rangle) = a(z) | \lambda \rangle.$

Duals of modules

Definition: the dual of a module

Let (V, Y, Ω, ω) be a vertex operator algebra and (M, Y^M) , $M = \bigoplus_n M_n$ a module. Then $(M', Y^{M'})$

• $M' = \bigoplus_n \operatorname{Hom}_{\mathbb{C}}(M_n, \mathbb{C}),$

• $\langle Y_z^{M'}(v \otimes \mu), m \rangle = \langle \mu, Y_{z^{-1}}^M(e^{zL_1}(-z^2)^{L_0}v \otimes m) \rangle, v \in V, m \in M, \mu \in M'.$ is again a (V, Y)-module.

Heisenberg example: For the choice of conformal vector ω_{ρ} , we have $F'_{\lambda} \cong F_{2\rho-\lambda}$

Motivating tensor products

- In quantum field theory all information is encoded in *n*-point correlation functions.
- In conformal quantum field theory (CFT) these correlation functions are *V*-multilinear functions.
- So we need to understand multilinear algebra for vertex algebras.
- This is also a natural question for commutative algebras.

Definition: Intertwining operator, V-bilinear maps

Let (V, Ω, Y, ω) be a vertex operator algebra and $(M_1, Y^{M_1}), (M_2, Y^{M_2}), (M_3, Y^{M_3})$ be *V*-modules. An intertwining operator of type $\binom{M_3}{M_1, M_2}$ is a map $\mathcal{Y}_x : M_1 \otimes M_2 \to M_3\{x\}$ such that for all $m_i \in M_i$

- $\mathcal{Y}_x(m_1 \otimes m_2)$ truncates below.
- $\mathcal{Y}_x(L_{-1}m_1\otimes m_2)=\partial_x\mathcal{Y}_x(m_1\otimes m_2).$
- The expansions $Y_z^{M_3}(A \otimes \mathcal{Y}_x(m_1 \otimes m_2)) \sim \mathcal{Y}_x(Y_{z-x}^{M_1}(A \otimes m_1) \otimes m_2) \sim \mathcal{Y}_x(m_1 \otimes Y_z^{M_2}(A \otimes m_2))$ can be identified.

Observations:

- The field map Y is an intertwining operator of type $\binom{V}{V,V}$.
- The action Y^M is an intertwining operator of type $\binom{M}{V,M}$.
- Intertwining operators are *V*-bilinear maps. All intertwining operators of a given type form a vector space. The field map *Y* and the action Y^M have a distinguished normalisation due to $Y_z(\Omega \otimes -) = \text{id.}$

Example: Heisenberg intertwining operators

Recall the Heisenberg Fock spaces F_{μ} , $\mu \in \mathbb{C}$. Then dim $\binom{F_{\rho}}{F_{\mu}, F_{\nu}} = \delta_{\rho,\mu+\nu}$ for all $\rho, \mu, \nu \in \mathbb{C}$. $\binom{F_{\mu+\nu}}{F_{\mu}, F_{\nu}}$ is spanned by

$$\mathcal{Y}_{x}^{F_{\mu},F_{\nu}}(p|\mu\rangle\otimes q|\nu\rangle) = x^{\mu\nu}S_{\mu}\prod_{m\geq 1}\exp\left(\mu\frac{a_{-m}}{m}x^{m}\right)Y_{x}^{F_{\nu}}(p|0\rangle\otimes -)$$
$$\cdot\prod_{m\geq 1}\exp\left(-\mu\frac{a_{m}}{m}x^{-m}\right)q|\nu\rangle,$$

where $S_{\mu}: |\nu\rangle \mapsto |\mu + \nu\rangle$ is the shift operator.

Tensor products pull multilinear algebra back to linear algebra!

Definition: Fusion product aka vertex algebra tensor product

Let (V, Ω, Y, ω) be a vertex operator algebra and $(M_1, Y^{M_1}), (M_2, Y^{M_2})$ be *V*-modules. A fusion product is a triple $(M_1 \boxtimes M_2, Y^{M_1 \boxtimes M_2}, \mathcal{Y}^{M_1, M_2})$, where $(M_1 \boxtimes M_2, Y^{M_1 \boxtimes M_2})$ is a *V*-module and \mathcal{Y}^{M_1, M_2} is an intertwining operator of type $\binom{M_1 \boxtimes M_2}{M_1, M_2}$ such that the following universal property holds: For every *V*-module (X, Y^X) and intertwining operator \mathcal{Y}^X of type $\binom{X}{M_1, M_2}$

In contrast to linear algebra (or ring theory) constructing $M_1 \boxtimes M_2$ and decomposing into a direct sum of indecomposable modules is extremely hard.

(Simon	

Well chosen categories of modules are tensor categories with respect to \boxtimes with the following structures. [Huang-Lepowsky-Zhang]

- For module homomorphimsms $f : X \to Z$, $g : U \to W$, the morphism $f \boxtimes g$ is uniquely characterised by $(f \boxtimes g) \circ \mathcal{Y}^{X \boxtimes U} = \mathcal{Y}^{Z \boxtimes W} \circ (f \otimes g)$
- *V* is the tensor identity and the unit isomorphisms are uniquely characterised by

$$\ell_M\left(\mathcal{Y}_z^{V,M}(a\otimes m)\right) = Y_z^M(a\otimes m) \text{ and } \\ r_M\left(\mathcal{Y}^{M,V}(m\otimes a)\right) = e^{zL_{-1}}Y_{-z}^M(a\otimes m).$$

associativity isomorphisms (hardest part!)

$$\begin{split} & A_{M_1,M_2,M_3}\left(\mathcal{Y}_{x_1}^{M_1,M_2\boxtimes M_3}(m_1\otimes\mathcal{Y}_{x_2}^{M_2,M_3}(m_2\otimes m_3))\right) = \\ & \mathcal{Y}_{x_2}^{M_1\boxtimes M_2,M_3}(\mathcal{Y}_{x_1-x_2}^{M_1,M_2}(m_1\otimes m_2)\otimes m_3) \\ & \text{All analytic details hidden.} \end{split}$$

• Braiding isomorphisms uniquely characterised by $c_{M_1,M_2}\left(\mathcal{Y}_x^{M_1,M_2}(m_1\otimes m_2)\right) = e^{xL_{-1}}\mathcal{Y}_{e^{i\pi_x}}^{M_2,M_1}(m_2\otimes m_1)$

• If the vertex algebra *V* is conformal (a vertex operator algebra) and the modules are chosen to be compatible with this conformal structure, then there is also a twist $\theta_M = e^{2\pi i L_0}|_M$, which satisfies the balancing equation

 $\theta_{M_1 \boxtimes M_2} = c_{M_1, M_2} \circ c_{M_2, M_1} \circ (\theta_{M_1} \boxtimes \theta_{M_2})$

• Tensor categories of vertex operator algebra modules depend only very weakly on the conformal structure. Only the twist and taking duals depend on the conformal structure.

Theorem [Huang, Moore-Seiberg]: The Verlinde Conjecture

Let (V, Y, Ω, ω) be a vertex operator algebra and Adm V be the category of admissible V-modules. If

- $1 \dim V_0 = 1, \dim V_{-n} = 0, \dim V_n < \infty, \ n \in \mathbb{N},$
- 2 V is simple as a module over itself,
- **3** $V \cong V^*$, self-dual,
- 4 dim $V/c_2(V) < \infty$, (a technical finiteness condition)
- **5** Adm(V) is semisimple,

then $\operatorname{Adm} V$ is a modular tensor category. Further the action of the modular group on the category (which determines Verlinde's formula) is equal (after a renormalisation) to the action of the modular group on module characters.

Recap

- Vertex algebras are almost commutative unital algebras with derivations.
- The conformal vector is a choice/structure: there can be 0, 1 or many.
- Vertex algebras admit modules. "Good choices" of module categories admit a tensor (aka fusion) product.
- With the exception of associators, the tensor structure morphisms follow from easy constructions.

Beyond modular tensor categories

The Verlinde conjecture is about vertex operator algebras that are *maximally nice*. There are many deviations from niceness.

- The category of modules need not be finite (the Heisenberg example is not finite).
- The category of modules need not be semisimple.
- The tensor product need not be left exact (there can be non-flat objects). [Gaberdiel-Runkel-SW]
- The first two deviations above can still be nice in the sense that they admit rigid duals. [Tsuchiya-SW,Allen-SW] The third deviation is more fundamentally broken, as non-flat objects cannot have rigid duals.

Duals of intertwining operators

Proposition [HLZ]

Let \mathcal{Y} be an intertwining operator of type $\binom{M_3}{M_1, M_2}$. Then

$$egin{aligned} &M_1\otimes M_3' o M_2'\{x\}\ &m\otimes
u\mapsto
u(\mathcal{Y}_{x^{-1}}(e^{zL_1}(-z^2)^{L_0}m\otimes -)) \end{aligned}$$

is an intertwining operator of type $\binom{M'_2}{M_1, M'_3}$. Thus $\binom{M_3}{M_1, M_2} \cong \binom{M'_2}{M_1, M'_3}$.

Remark

Intertwining operators of type $\binom{M_3}{M_1, M_2}$ should be thought of as Hom-spaces of the form $\operatorname{Hom}_V(M_1 \boxtimes M_2, M_3)$.

Defininition: Grothendieck Verdier categories

Let \mathcal{C} be a monoidal (abelian linear) category.

1 An object $K \in C$ is called *dualising*, if for all $Y \in C$ the functor $\operatorname{Hom}_V(-\otimes Y, K)$ is representable, that is,

 $\operatorname{Hom}_V(X \otimes Y, K) \cong \operatorname{Hom}_V(X, GY),$

and if the so defined contravariant functor $G : C \to C$ is an anti-equivalence.

2 A monoidal category C together with a choice of dualising object $K \in C$ is called a *Grothendieck-Verdier* or *-autonomous category.

Theorem [Allen-Lentner-Schweigert-SW]

Let (V, Y) be a vertex operator algebra and let Rep(V) be choice of modules to which the HLZ tensor product theory applies which is in addition closed under taking duals. Then V' is a dualising object for Rep(V) and (Rep(V), V') is a Grothendieck-Verdier category (actually ribbon Grothendieck-Verdier).

Why am I excited about this?

Grothendieck-Verdier categories have many appealing features

- The appear to be describe the *natural* duality structure of vertex operator algebra modules and the can accommodate all non-nice features mentioned previously.
- They admit two tensor products $X \otimes Y$ and $X \bullet Y = G(G^{-1}Y \otimes G^{-1}X)$, where \otimes is right exact and \bullet is left exact. In particular there are distributor morphisms

 $\partial_{X,Y,Z}^{l}: X \otimes (Y \bullet Z) \to (X \otimes Y) \bullet Z, \qquad \partial_{X,Y,Z}^{r}: (X \bullet Y) \otimes Z \to X \bullet (Y \otimes Z),$

which need not be isomorphisms. [Fuchs-Schaumann-Schweigert-SW]

• ⊗ admits inner Homs (right adjoints) and • admits inner coHoms (left adjoints which allow the construction of algebras and coalgebras (even Frobenius algebras) in C (crucial for conformal field theory).

Thank you!

For further reading I

- E. Frenkel and D. Ben-Zvi Vertex Algebras and Algebraic Curves. AMS, Mathematical Surveys and Monographs, Volume: 88, 2004.
 - Y-Z. Huang, J. Lepowsky, and L. Zhang. Logarithmic tensor product theory I–VIII. arXiv:1012.4193 [math.QA], arXiv:1012.4196 [math.QA], arXiv:1012.4197 [math.QA], arXiv:1012.4198 [math.QA], arXiv:1012.4199 [math.QA], arXiv:1012.4202 [math.QA], arXiv:1110.1929 [math.QA], arXiv:1110.1931 [math.QA].
 - Y-Z. Huang. Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math., 10:103–1054, 2008. arXiv: math/0406291
- G. Moore and N. Seiberg. *Classical and quantum conformal field theory*. Comm. Math. Phys., 123:177–254, 1989.

For further reading II

- R .Allen and S. Wood. Bosonic ghostbusting the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion, 2020. arXiv:2001.05986 [math.QA]
- M .Gaberdiel, I. Runkel, and S. Wood. Fusion rules and boundary conditions in the c = 0 triplet model. J. Phys., A42:325403, 2009. arXiv:0905.0916 [hep-th].
 - A. Tsuchiya and S .Wood. The tensor structure on the representation category of the triplet algebra. J. Phys. A:46:445203, 2013. arXiv:1201.0419 [math.QA]
- R. Allen, S. Lentner, C. Schweigert, and S. Wood, *Duality* structures for mod- ule categories of vertex operator algebras and the Feigin Fuchs boson, arXiv:2107.05718 [math.QA]
- J. Fuchs, G. Schaumann, C. Schweigert, S. Wood To appear