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Heisenberg double
~ Drinfeld double

(multiplicative operator)

{f-d Hopf algebra} < {PE} braided category

(fusion operator)
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The problem

» Study set-theoretic version of the YBE and the PE
[Drinfeld, 1992]

» Set-theoretic solutions of PE received a large interest
[Baaj Skandalis, 2003] [Jiang Liu, 2005]
[Kashaev2011] [Kashaev Reshetikhin, 2007]

» The study of set-theoretic solutions of PE form a pure
algebraic viewpoint

[Catino, Mazzotta, Miccoli, 2020]
[Catino, Mazzotta, Stefanelli, 2020]
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Problem
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Aim
Description of all involutive set-theoretic solutions of the Pentagon
Equation




Set-theoretic solutions of the PE

Definition
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Set-theoretic solutions of the PE

A characterization
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Set-theoretic solutions of the PE
and solutions of the RPE
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Set-theoretic solutions of the PE: Examples
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Set-theoretic solutions of the PE: Examples

The bijective solutions of PE over a group
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Some general results on bijective solutions
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Some general results on bijective solutions of PE
Left groups
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Involutive solutions of the PE
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Involutive solutions of the PE

As direct product of solutions
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Involutive solutions of the PE

A reduction

Hence, each involutive solution of the PE (S, s) is composed of
solutions sg and sg on a left zero semigroup E and on an

elementary abelian 2-group G.

The solution s¢ is unique.

!

the description of all involutive set-theoretic solutions (S, s) of the
PE on a semigroup S can be reduced to the description of
solutions on a left zero semigroup.
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The retraction of involutive solutions of PE

Definition

» (S, s) an involutive solution of the PE.

Define the equivalence relation ~ on S called retraction
X~y &= 0,=0,.

From the description of involutive solutions we get
» ~ is a congruence of S
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Hence, Ret(S,s) = (S5,3) is a solution of PE called retract
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Irretractable involutive solutions of the PE

The retract is irretractable

» (S,s) an involutive solution of PE.
(S, s) is irretractable if (S,s) = Ret(S, s).

Ox =0y < 0x(z) =0,(z) forallze S
> 0Oy, (z) = 0p,() forallze S
— 0,0, =0,0,forallze$
— 0,=10,
= x=7.

» Ret(S,s) is an irretractable involutive solution of the PE.




Irretractable involutive solutions of the PE

The irretractable soltion is “unique”
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Involutive solutions of PE

The extensions

(A,+) an elementary abelian 2-group
(A, ta) the irretractable involutive solution of the PE on A

X a non-empty set
og: A— Sym(X)
S=XxA
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The extensions

(A,+) an elementary abelian 2-group
(A, ta) the irretractable involutive solution of the PE on A
X a non-empty set
og: A— Sym(X)
> S=XXA
Defineon S x S

s((x,a). (v, b)) = ((x, a), (021605, ' (¥), 2 + b)).
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» (S,s) is an involutive solution of the PE.

» Ret(S,s) = (A, ta).
Such a solution (S, s) is called extension of (A, ta) by X and ¢ and
denoted by Ext% (A, ta).
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Solutions as extensions

S a left zero semigroup

(S,s) an involutive solution of the PE
(A, +) an elementary abelian 2-group
34X an non-empty set

do: A — Sym(X)

vvyyyvyy

stS=XxAand(S,s) =Ext%(A, ta)
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Involutive solutions of PE

A description

» (S,s) an involutive solution of the PE.
» JA, G elementary abelian 2-groups
» X a non-empty set
» o: A— Sym(X) a map
st. S=XxAx G and

(S,s) = Ext% (A, ta) x (G, s¢)

» (A, ta) is the unique irretractable invulutive solution of PE on
A

» (G, sg) is the unique bijective solution of PE on G.

Moreover, Ret(S,s) = (A, ta)
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Involutive solutions of PE

Isomorphic extensions

When are two extensions isomorphic as solutions?
» (S,s) and (S', s’) solutions of PE
» f:S— S amap
f is an isomorphism if f is bijective and (f x f)s = s'(f x f)
» (A, +) an elementary abelian 2-group
» X a non-empty set
» 0: A— Sym(X) and p: A — Sym(X) maps
Then Ext% (A, ta) and Ext (A, ta) are isomorphic.

l
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Thanks for your attention!



