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The problem

I Study set-theoretic version of the YBE and the PE

[Drinfeld, 1992]

I Set-theoretic solutions of PE received a large interest

[Baaj Skandalis, 2003] [Jiang Liu, 2005]

[Kashaev2011] [Kashaev Reshetikhin, 2007]

I The study of set-theoretic solutions of PE form a pure

algebraic viewpoint

[Catino, Mazzotta, Miccoli, 2020]

[Catino, Mazzotta, Stefanelli, 2020]
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The problem and our aim

Problem

Description of set-theoretic solutions of the Pentagon Equation

Aim

Description of all involutive set-theoretic solutions of the Pentagon

Equation
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Set-theoretic solutions of the PE

Definition
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Let S be a set and s Sts Sts be a map
Sid is a SET TEORETIC SOLUTION OF THE PENTAGON
EQUATION if in Sxsxs the following is satisfied

1239131121127231
szz idxs.si xidsB zxid idxEd zxid

Ss is

Finite if S is finite

Bijective if s is bijective

Bijective of finite oedee if Frein said

e Involutive if she id



Set-theoretic solutions of the PE

A characterization
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s set a s Sts Sss Write

scary a y Oz y On s s
o binary operation

s is a solution of
PE

Sio is a semigroup
On yz Only Oxy Z

OoncyOxy Oy



Set-theoretic solutions of the PE

and solutions of the RPE
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YBE
PE

5128 523 52351392223113112 112123

are
t ere is a solution of

egg
12513 23 423 12

Reversed pentagon equationRPE

S s bijective solution 5,5 is a solution
of the PE of the RPE

skid



Set-theoretic solutions of the PE: Examples
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S set fig Map Scs

s x y fca gey e ga g f f
is a solution gf fg

S semigroup

scary ng O y
is a solution of pe

s e End S

02 0



Set-theoretic solutions of the PE: Examples

The bijective solutions of PE over a group
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G group
sax y ay y

G sd is the unique bijective solution



Some general results on bijective solutions
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Sis a bijective solution of the PE

Um yes Fly res se g s a v

IN Oulu

n UN 82 5

gon Oooo Our Ow

On ne s is a semigroup

Sia is of finite ode II sit sh id

Uncyes Iz Ny k

Sys S S is a simple semigroup



Some general results on bijective solutions of PE

Left groups
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Involutive solutions of the PE

A retractable involutive solution of the PE
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Involutive solutions of the PE

As direct product of solutions
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Involutive solutions of the PE

A reduction

Hence, each involutive solution of the PE (S , s) is composed of

solutions sE and sG on a left zero semigroup E and on an

elementary abelian 2-group G .

The solution sG is unique.

#
the description of all involutive set-theoretic solutions (S , s) of the
PE on a semigroup S can be reduced to the description of

solutions on a left zero semigroup.

15/22



The retraction of involutive solutions of PE

Definition

I (S , s) an involutive solution of the PE.

Define the equivalence relation ⇠ on S called retraction

x ⇠ y () ✓x = ✓y .

From the description of involutive solutions we get
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Irretractable involutive solutions of the PE

The retract is irretractable

I (S , s) an involutive solution of PE.

(S , s) is irretractable if (S , s) = Ret(S , s).

✓x = ✓y () ✓x(z) = ✓y (z) for all z 2 S

() ✓✓x (z) = ✓✓y (z) for all z 2 S

() ✓x✓z = ✓y✓z for all z 2 S

() ✓x = ✓y

() x = y .

I Ret(S , s) is an irretractable involutive solution of the PE.
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Irretractable involutive solutions of the PE

The irretractable soltion is “unique”
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Involutive solutions of PE

The extensions

I (A,+) an elementary abelian 2-group

I (A, tA) the irretractable involutive solution of the PE on A

I X a non-empty set

I � : A! Sym(X )

I S = X ⇥ A

Define on S ⇥ S

s((x , a), (y , b)) = ((x , a), (�a+b�
�1
b (y), a+ b)).

I (S , s) is an involutive solution of the PE.

I Ret(S , s) = (A, tA).

Such a solution (S , s) is called extension of (A, tA) by X and � and

denoted by Ext
�
X (A, tA).
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Involutive solutions of PE

Solutions as extensions

I S a left zero semigroup

I (S , s) an involutive solution of the PE

I 9(A,+) an elementary abelian 2-group

I 9X an non-empty set

I 9� : A! Sym(X )

s.t S = X ⇥ A and (S , s) = Ext
�
X (A, tA)
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Involutive solutions of PE

A description

I (S , s) an involutive solution of the PE.

I 9A,G elementary abelian 2-groups

I X a non-empty set

I � : A! Sym(X ) a map

s.t. S = X ⇥ A⇥ G and

(S , s) = Ext
�
X (A, tA)⇥ (G , sG )

I (A, tA) is the unique irretractable invulutive solution of PE on

A

I (G , sG ) is the unique bijective solution of PE on G .

Moreover, Ret(S , s) = (A, tA)
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Involutive solutions of PE

Isomorphic extensions

When are two extensions isomorphic as solutions?

I (S , s) and (S 0, s 0) solutions of PE

I f : S ! S 0
a map

f is an isomorphism if f is bijective and (f ⇥ f )s = s 0(f ⇥ f )

I (A,+) an elementary abelian 2-group

I X a non-empty set

I � : A! Sym(X ) and ⇢ : A! Sym(X ) maps

Then Ext
�
X (A, tA) and Ext

⇢
X (A, tA) are isomorphic.?y

{involutive solutions} bijective ���!
⇢
X ⇥ A⇥ G

����
X 6= ;
A,G elem. ab. 2-group

�
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Thanks for your attention!


