Bijective set-theoretic solutions of the Pentagon Equation

Ilaria Colazzo

I.Colazzo@exeter.ac.uk

Al@Bicocca Take Away
12 November 2021

Overview

The Pentagon Equation (PE)

Set-theoretic solutions of the PE

Some general results on bijective solutions of the PE

Involutive solutions of the PE

The retraction of inovlutive solutions of the PE

The extensions of involutive solution of the PE

Motivation (I)

Zamólo'dçikóv" "80
Tetrahedron Equation ... threé-dimeñional

Pentagon Equation

Motivation (I)

Pentagon Equation
$S_{12} S_{23}=S_{23} S_{13} S_{12}$

Motivation (I)

Motivation (I)

Motivation (II)

$$
\text { Pentagon Equation - } S_{12} S_{23}=S_{23} S_{13} S_{12}
$$

Motivation (II)

Heisenberg double
~ Drinfeld double

Motivation (II)

$$
\text { Pentagon Equation }-S_{12} S_{23}=S_{23} S_{13} S_{12}
$$

Heisenberg double
~ Drinfeld double
appear in various context
$\{$ f-d Hopf algebra $\} \leftrightarrow\{P E\}$

Motivation (II)

$$
\text { Pentagon Equation }-S_{12} S_{23}=S_{23} S_{13} S_{12}
$$

appear in various context

Heisenberg double
~ Drinfeld double
Hilbert space
(multiplicative operator)
$\{$ f-d Hopf algebra $\} \leftrightarrow\{P E\}$

Motivation (II)

The problem

- Study set-theoretic version of the YBE and the PE
[Drinfeld, 1992]
- Set-theoretic solutions of PE received a large interest [Baaj' Skandalis; 2003] [Jiang Liu, 2005] [Kashaev2011] [Kashaev Reshetikhin, 2007]
\rightarrow The study of set-theoretic solutions of. P.E. form a pure algebraic viewpoint
[Catiṇo, Mạzžoṭtạ, Mịcçoli, 2020]
[Catino; Mazzżottá, Stefanelli, 2020]

The problem

- Study set-theoretic version of the YBE and the PE
[Drinfeld, 1992]
- Set-theoretic solutions of PE received a large interest [Baaj Skandalis, 2003] [Jiang Liu, 2005]
[Kashaev2011] [Kashaev Reshetikhin, 2007]
The study of set-theoretic solutions of PEE form a pure
algebraic viewpoint.
[Catiṇo, Mạzzottaà, Micçoli, 2020]
[Catino; Mazżotta, Stefarielli, 2020]

The problem

- Study set-theoretic version of the YBE and the PE
[Drinfeld, 1992]
- Set-theoretic solutions of PE received a large interest [Baaj Skandalis, 2003] [Jiang Liu, 2005]
[Kashaev2011] [Kashaev Reshetikhin, 2007]
- The study of set-theoretic solutions of PE form a pure algebraic viewpoint
[Catino, Mazzotta, Miccoli, 2020]
[Catino, Mazzotta, Stefanelli, 2020]

The problem and our aim

Problem

Description of set-theoretic solutions of the Pentagon Equation

Description of all involutive set-theoretic solutions of the Pentagon Equation

The problem and our aim

Problem

Description of set-theoretic solutions of the Pentagon Equation

Aim

Description of all involutive set-theoretic solutions of the Pentagon Equation

Set-theoretic solutions of the PE
Definition
Let S be D set and s: $S \times S \rightarrow S \times S$ be 0 mop. (S, s) is a (SET-TFORETIC) SALUTION OF THE PENTACTON EQUATION if in $S \times S \times S$ the following is sotisfied

$$
s_{23}=\frac{s_{23} s_{13} s_{12}=s_{12} s_{23}}{s_{12}=s \times i d} s_{13}=(2 \times i d)(i d \times s)(2 \times i d)
$$

(s, s) is

- Finite if S is finite
- Bifective if s is bijective
- Bijective of finite order if ZrelN s^{n} =id
- Involutive if $s^{2}=$ id
$6 / 22$

Set-theoretic solutions of the PE
A characterization
S set o s: $S \times S \rightarrow S S$. Write

$$
s(x, y)=\left(x \cdot y, \theta_{x}(y)\right.
$$

$$
\theta_{x}: s \rightarrow s
$$

- birary peration
s is a solection of $\Leftrightarrow(S, C)$ is a semigroup PE

$$
\begin{aligned}
& \theta_{x}(y z)=\theta_{x}(y) \theta_{x y}(z) \leftarrow \\
& \theta_{\theta_{x}(y)} \theta_{x y}=\theta_{y}
\end{aligned}
$$

Set-theoretic solutions of the PE
and solutions of the RPE
PE

$$
\begin{aligned}
& s_{23} s_{13} s_{12}=s_{12} s_{23} \\
& t=r r^{\prime} \text { is a solution of } \\
& t_{12} t_{13} t_{23}=t_{23} t_{12}
\end{aligned}
$$

Reversed pent agon equation (RTE)
(S, s) bijective solution $\Leftrightarrow\left(S, s^{-1}\right)$ is a solution of the PE

$$
s^{2}=i d
$$

Set-theoretic solutions of the PE: Examples

- S set fig: Map (s, S)

$$
\begin{gathered}
s(x, y)=(f(x), g(y)) \Leftrightarrow g^{2}=g f^{2}=f \\
\text { is } \Rightarrow \text { solution } g=f g
\end{gathered}
$$

- (S, \cdot) semigroup

$$
s(x, y)=(x y, \theta(y)) c \theta \in \text { End }(s, \cdot)
$$

$$
\text { is solution of } \mathrm{FE} \quad \theta^{2}=\theta
$$

Set-theoretic solutions of the PE: Examples
The bijective solutions of PE over a group

- G group

$$
\Delta_{G}(x, y)=(x y, y)
$$

$\left.(G,)_{Q}\right)$ is the unique bjective solution

Some general results on bijective solutions
(S, s) a bijective solution of the $P E$

$$
\begin{aligned}
\forall x, y \in S \Rightarrow \exists l u, v \in S \quad(x, y)= & s(u, v) \\
& \left(u v, \sigma_{u}(v)\right)
\end{aligned}
$$

- $x=u v \Rightarrow s^{2}=s$
- $\theta_{y} \theta_{x}=\theta_{\sigma_{u}(v)} \theta_{u v}=\sigma_{v}$
$T=\left\{\sigma_{x}: x \in S\right\}$ is a semigroup
(s, o) is of finite orde $\exists \underline{n}$ sit. $s^{n}=i d$ $\forall x, y \in S \quad \exists z \quad x y z=x$
SIS $=S \Rightarrow S$ is 0 simple semigeap

Some general results on bijective solutions of PE
Left groups
E - left zero semigroup

$$
\forall x, y \quad x y=x
$$

$G-$ group
$S=E \times G$ is LEFT GROUP

$$
(i, g)(j, h)=(i, g h)
$$

- (S, Δ) is a bijective solution of the PE and RPE (EA. $s^{2}=i d$)
Then S is a left group
- S is e left zero semigraup and s is of finite order then $\theta_{x} \in \operatorname{Sym}(S)$ and $\sigma_{x}=$ id or f pf

Involutive solutions of the PE
A retractable invalutive solutioncof the cat
Let E be left zero semigroup
 ($E, s E$) involutive solution on $E \quad s(i, j)=\left(i, O_{i}(j)\right)$ $S=E \times G$

$$
s((i, g),(j, h))=((i, g R),(\theta ;(j), h))
$$

Then (S, δ) is solution of the $P E$ called the BIRECT PRODUCT of $(E, S E)$ and $\left(G, J_{G}\right)$

Involutive solutions of the PE
As direct product of solutions
(S, s) involutive solution of the $D \in$
$\exists E$ left zero semigroup
$\exists G$ group
SIt. $S=E \times G$

$$
\begin{aligned}
& s_{E}=s_{S \mid E \times E} \\
& s=\left(\bar{E}, s_{E}\right) \times\left(G / s_{G}\right)
\end{aligned}
$$

$T=\left\{\sigma_{x}: x \in S\right\}$ is on elementary abelion 2-group

Involutive solutions of the PE

A reduction

Hence, each involutive solution of the $\operatorname{PE}(S, s)$ is composed of solutions s_{E} and s_{G} on a left zero semigroup E and on an elementary abelian 2-group G.

The solution s_{G} is unique.
\downarrow
the description of all involutive set-theoretic solutions (S, s) of the PE on a semigroup S can be reduced to the description of solutions on a left zero semigroup.

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get

$$
\begin{aligned}
\theta_{x y}=\theta_{x} & \Longleftrightarrow x y \sim x \\
x_{1} \sim y_{1} \text { and } x_{2} \sim y_{2} & \Longrightarrow x_{1} x_{2} \sim x_{1} \sim y_{1} \sim y_{1} y_{2}
\end{aligned}
$$

$\Longrightarrow \quad \sim$ is a congruence of S

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get
$-\sim$ is a congruence of S

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get

- \sim is a congruence of S

$$
\begin{aligned}
\theta_{\theta_{x}(y)} & =\theta_{x} \theta_{y} \\
x_{1} \sim y_{1} \text { and } x_{2} \sim y_{2} & \left.\Longrightarrow \theta_{\theta_{x_{1}}\left(y_{1}\right)}=\theta_{x_{1}} \theta_{y_{1}}=\theta_{x_{2}} \theta_{y_{2}}=\theta_{\theta_{x_{2}}\left(y_{2}\right)}\right) \\
& \Longrightarrow \theta_{x_{1}}\left(y_{1}\right) \sim \theta_{x_{2}}\left(y_{2}\right)
\end{aligned}
$$

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get
$-\sim$ is a congruence of S
$-\theta_{x_{1}}\left(y_{1}\right) \sim \theta_{x_{2}}\left(y_{2}\right)$

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get
$-\sim$ is a congruence of S

- $\theta_{x_{1}}\left(y_{1}\right) \sim \theta_{x_{2}}\left(y_{2}\right)$

This allows us to define a map $\bar{s}: \bar{S} \times \bar{S} \rightarrow \bar{S} \times \bar{S}$

$$
\bar{s}(\bar{x}, \bar{y})=\left(\bar{x}, \bar{\theta}_{\bar{x}}(\bar{y})\right)
$$

The retraction of involutive solutions of $P E$

Definition

- (S, s) an involutive solution of the PE.

Define the equivalence relation \sim on S called retraction

$$
x \sim y \Longleftrightarrow \theta_{x}=\theta_{y}
$$

From the description of involutive solutions we get
$-\sim$ is a congruence of S
$-\theta_{x_{1}}\left(y_{1}\right) \sim \theta_{x_{2}}\left(y_{2}\right)$
This allows us to define a map $\bar{s}: \bar{S} \times \bar{S} \rightarrow \bar{S} \times \bar{S}$

$$
\bar{s}(\bar{x}, \bar{y})=\left(\bar{x}, \bar{\theta}_{\bar{x}}(\bar{y})\right)
$$

Hence, $\operatorname{Ret}(S, s)=(\bar{S}, \bar{s})$ is a solution of PE called retract

Irretractable involutive solutions of the PE

The retract is irretractable

- (S, s) an involutive solution of PE.
(S, s) is irretractable if $(S, s)=\operatorname{Ret}(S, s)$.

$$
\begin{aligned}
\bar{\theta} \bar{x}=\bar{\theta}_{\bar{y}} & \Longleftrightarrow \overline{\theta_{x}(z)}=\overline{\theta_{y}(z)} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{\theta_{x}(z)}=\theta_{\theta_{y}(z)} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{x} \theta_{z}=\theta_{y} \theta_{z} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{x}=\theta_{y} \\
& \Longleftrightarrow \bar{x}=\bar{y}
\end{aligned}
$$

$\rightarrow \operatorname{Ret}(S, s)$ is an irretractable involutive solution of the $P E$.

Irretractable involutive solutions of the PE

The retract is irretractable

- (S, s) an involutive solution of PE.
(S, s) is irretractable if $(S, s)=\operatorname{Ret}(S, s)$.

$$
\begin{aligned}
\bar{\theta}_{\bar{x}}=\bar{\theta}_{\bar{y}} & \Longleftrightarrow \overline{\theta_{x}(z)}=\overline{\theta_{y}(z)} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{\theta_{x}(z)}=\theta_{\theta_{y}(z)} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{x} \theta_{z}=\theta_{y} \theta_{z} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{x}=\theta_{y} \\
& \Longleftrightarrow \bar{x}=\bar{y} .
\end{aligned}
$$

- $\operatorname{Ret}(S, s)$ is an irretractable involutive solution of the PE.

Irretractable involutive solutions of the PE

The retract is irretractable

- (S, s) an involutive solution of PE.
(S, s) is irretractable if $(S, s)=\operatorname{Ret}(S, s)$.

$$
\begin{aligned}
\bar{\theta}_{\bar{x}}=\bar{\theta}_{\bar{y}} & \Longleftrightarrow \overline{\theta_{x}(z)}=\overline{\theta_{y}(z)} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{\theta_{x}(z)}=\theta_{\theta_{y}(z)} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{x} \theta_{z}=\theta_{y} \theta_{z} \text { for all } z \in S \\
& \Longleftrightarrow \theta_{x}=\theta_{y} \\
& \Longleftrightarrow \bar{x}=\bar{y} .
\end{aligned}
$$

- $\operatorname{Ret}(S, s)$ is an irretractable involutive solution of the PE.

Irretractable involutive solutions of the PE
The irretractable soltion is "unique"
(A, t) elementory abelian 2-group

$$
\begin{equation*}
t_{A}(x, y)=(x, x+y) \tag{*}
\end{equation*}
$$

is a irretractable solution of the PE involutive

$$
\begin{aligned}
& s_{A}(x, y)=(x+y, y) \\
& \hat{\gamma} \\
& t_{A}=\varepsilon s_{A} z
\end{aligned}
$$

If (S, Δ) is an irretroctoble solution then $\exists+$ (s, t) is an elementary obelion 2-graup

$$
(s, s)=\left(s, t_{s}\right)
$$

Involutive solutions of PE

The extensions

- $(A,+)$ an elementary abelian 2-group
- $\left(A, t_{A}\right)$ the irretractable involutive solution of the PE on A
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$
- $S=X \times A$

Define on $S \times S$

$$
\dot{s}((x, a) ;(y, b)) \doteqdot\left((x, \dot{a}) ;\left(\sigma_{a+b} \sigma_{b}^{-1}(\dot{y}), \dot{a}+b\right)\right)
$$

Such a solution (S, s) is called extension of $\left(A, t_{A}\right)$ by X and σ and denoted by $E x x^{\sigma}\left(A, t_{A}\right)$

Involutive solutions of PE

The extensions

- $(A,+)$ an elementary abelian 2-group
- $\left(A, t_{A}\right)$ the irretractable involutive solution of the PE on A
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$
- $S=X \times A$

Define on $S \times S$

$$
s((x, a),(y, b))=\left((x, a),\left(\sigma_{a+b} \sigma_{b}^{-1}(y), a+b\right)\right)
$$

- (S, S) is an involutive solution of the P.E.
$\Rightarrow \operatorname{Ret}(S, s)=\left(A, t_{A}\right)$
Such a solution. $\left(S, s\right.$.) is called extension of. $\left(A_{,} t_{A}\right)$ by. X and. σ and. 2

Involutive solutions of PE

The extensions

- $(A,+)$ an elementary abelian 2-group
- $\left(A, t_{A}\right)$ the irretractable involutive solution of the PE on A
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$
- $S=X \times A$

Define on $S \times S$

$$
s((x, a),(y, b))=\left((x, a),\left(\sigma_{a+b} \sigma_{b}^{-1}(y), a+b\right)\right)
$$

- (S, s) is an involutive solution of the PE.

Involutive solutions of PE

The extensions

- $(A,+)$ an elementary abelian 2-group
- $\left(A, t_{A}\right)$ the irretractable involutive solution of the PE on A
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$
- $S=X \times A$

Define on $S \times S$

$$
s((x, a),(y, b))=\left((x, a),\left(\sigma_{a+b} \sigma_{b}^{-1}(y), a+b\right)\right)
$$

- (S, s) is an involutive solution of the PE.
$-\operatorname{Ret}(S, s)=\left(A, t_{A}\right)$.

Involutive solutions of PE

The extensions

- $(A,+)$ an elementary abelian 2-group
- $\left(A, t_{A}\right)$ the irretractable involutive solution of the PE on A
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$
- $S=X \times A$

Define on $S \times S$

$$
s((x, a),(y, b))=\left((x, a),\left(\sigma_{a+b} \sigma_{b}^{-1}(y), a+b\right)\right)
$$

- (S, s) is an involutive solution of the PE.
- $\operatorname{Ret}(S, s)=\left(A, t_{A}\right)$.

Such a solution (S, s) is called extension of $\left(A, t_{A}\right)$ by X and σ and denoted by $\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right)$.

Involutive solutions of PE

Solutions as extensions

- S a left zero semigroup
- (S, s) an involutive solution of the PE
- $\exists(A ;+)$ an elementary abelian 2-group
- $\exists X$ an non-empty set
$\rightarrow \exists \sigma: A \rightarrow \operatorname{Sym}(X)$
s.t $S=X \times A$ and $(S, s)=\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right)$

Involutive solutions of PE

Solutions as extensions

- S a left zero semigroup
- (S, s) an involutive solution of the PE
- $\exists(A,+)$ an elementary abelian 2-group
- $\exists X$ an non-empty set
- $\exists \sigma: A \rightarrow \operatorname{Sym}(X)$

$$
\text { s.t } S=X \times A \text { and }(S, s)=\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right)
$$

Involutive solutions of PE

Solutions as extensions

- S a left zero semigroup
- (S, s) an involutive solution of the PE
- $\exists(A,+)$ an elementary abelian 2-group
- $\exists X$ an non-empty set
- $\exists \sigma: A \rightarrow \operatorname{Sym}(X)$

$$
\text { s.t } S=X \times A \text { and }(S, s)=\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right)
$$

Involutive solutions of PE

A description

- (S, s) an involutive solution of the PE.
- $\exists A, G$ elementary abelian 2-groups
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$ a map
- $\left(A, t_{A}\right)$ is the unique irretractable invulutive solution of PE on
P. $(G, S G)$ is the unique bijective solution of PE on G.
\square

Involutive solutions of PE

A description

- (S, s) an involutive solution of the PE.
- $\exists A, G$ elementary abelian 2-groups
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$ a map
s.t. $S=X \times A \times G$ and

$$
(S, s)=\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right) \times\left(G, s_{G}\right)
$$

Involutive solutions of PE

A description

- (S, s) an involutive solution of the PE.
- $\exists A, G$ elementary abelian 2-groups
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$ a map
s.t. $S=X \times A \times G$ and

$$
(S, s)=\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right) \times\left(G, s_{G}\right)
$$

- $\left(A, t_{A}\right)$ is the unique irretractable invulutive solution of PE on A
- $\left(G, s_{G}\right)$ is the unique bijective solution of PE on G.

Involutive solutions of PE

A description

- (S, s) an involutive solution of the PE.
- $\exists A, G$ elementary abelian 2-groups
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$ a map
s.t. $S=X \times A \times G$ and

$$
(S, s)=\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right) \times\left(G, s_{G}\right)
$$

- $\left(A, t_{A}\right)$ is the unique irretractable invulutive solution of PE on A
- $\left(G, s_{G}\right)$ is the unique bijective solution of PE on G.

Moreover, $\operatorname{Ret}(S, s)=\left(A, t_{A}\right)$

Involutive solutions of PE

Isomorphic extensions

When are two extensions isomorphic as solutions?

$\rightarrow f: S \rightarrow S^{\prime}$ a map
f is an isomornhism if f ' is bijective and ($f \times f$) $s=s^{\prime}(f \times f)$
$\rightarrow(A,+)$ an ẹlementary abelian 2-group

- X a non-empty set
$\rightarrow \sigma: A \rightarrow \operatorname{Sym}(X)$ and $\rho: A \rightarrow \operatorname{Sym}(X)$ maps
Then Ext ${ }_{X}^{\sigma}\left(A, t_{A}\right)$ and Ext ${ }_{X}^{\rho}\left(A, t_{A}\right)$ are isomorphic
$\{$ involutive solutions $\} \stackrel{\text { bijective }}{\longleftrightarrow}\left\{X \times A \times G \left\lvert\, \begin{array}{l}X \neq \emptyset \\ A, G \text { elem: ab. 2-group }\end{array}\right.\right\}$

Involutive solutions of PE

Isomorphic extensions

When are two extensions isomorphic as solutions?

- (S, s) and $\left(S^{\prime}, s^{\prime}\right)$ solutions of PE
- $f: S \rightarrow S^{\prime}$ a map
f is an isomorphism if f is bijective and $(f \times f) s=s^{\prime}(f \times f)$
$\geqslant(A,+)$ an è ementary abelian 2-group
> X a non-empty set
$\rightarrow \sigma: A \rightarrow \operatorname{Sym}(X)$ and $\rho: A \rightarrow \operatorname{Sym}(X)$ maps
Then. Ext ${ }_{X}^{\sigma}\left(A, t_{A}\right)$ and Ext ${ }_{X}^{\rho}\left(A, t_{A}\right)$. are isomorphic.
$\{$ involutive solutions $\} \stackrel{\text { bijective }}{\leftrightarrows}\left\{\begin{array}{l|l}X \times A \times G & \begin{array}{l}X \neq \emptyset \\ A, G \\ G\end{array} \\ \hline \text { elem ạb. 2-group }\end{array}\right\}$

Involutive solutions of PE

Isomorphic extensions

When are two extensions isomorphic as solutions?

- (S, s) and $\left(S^{\prime}, s^{\prime}\right)$ solutions of PE
- $f: S \rightarrow S^{\prime}$ a map
f is an isomorphism if f is bijective and $(f \times f) s=s^{\prime}(f \times f)$
- $(A,+)$ an elementary abelian 2-group
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$ and $\rho: A \rightarrow \operatorname{Sym}(X)$ maps

Then $\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right)$ and $\operatorname{Ext}_{X}^{\rho}\left(A, t_{A}\right)$ are isomorphic.

Involutive solutions of PE

Isomorphic extensions

When are two extensions isomorphic as solutions?

- (S, s) and $\left(S^{\prime}, s^{\prime}\right)$ solutions of PE
- $f: S \rightarrow S^{\prime}$ a map
f is an isomorphism if f is bijective and $(f \times f) s=s^{\prime}(f \times f)$
- $(A,+)$ an elementary abelian 2-group
- X a non-empty set
- $\sigma: A \rightarrow \operatorname{Sym}(X)$ and $\rho: A \rightarrow \operatorname{Sym}(X)$ maps

Then $\operatorname{Ext}_{X}^{\sigma}\left(A, t_{A}\right)$ and $\operatorname{Ext}_{X}^{\rho}\left(A, t_{A}\right)$ are isomorphic.
\downarrow
\{involutive solutions $\} \stackrel{\text { bijective }}{\rightleftarrows}\left\{\begin{array}{l|l}X \times A \times G & \begin{array}{l}X \neq \emptyset \\ A, G \text { elem. ab. 2-group }\end{array}\end{array}\right\}$

Thanks for your attention!

