
\qquad
號

con

[^0]\qquad

The ang- axte eg ation

\qquad matci d pioduct ang- axte ed ation

 \qquad

路
-都 -

The ang- axte eg ation

If X is a non- mpt $s t$, a s t-th or trali $\mid \mathbf{t i n}$ of th ang- axt in quat'on r : $X \quad X$! $X \quad X$'s a map sush that th of ll-known maide ation

$$
r_{1} r_{2} r_{1}=r_{2} r_{1} r_{2}
$$

's sat'sf: d, wo i $r_{1}=r$ idrthat

In pait'rulai, if X 's a st, $r: X \quad X!X \quad X$ is a solut'on and $a ; b 2 X$,

So utior of $t i$ arg-saxt i quatior
iefly the state-ofl-the-a t l)

In 1 Et'ngof, Sih dl i and Solowis, Gat sa-lsanosia and Van d n igh

So utior of ti arg-zaxt i quation
iefly the state-oflthe-a t I)

\qquad
\qquad
\qquad

號
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Definition: the matithe
 O st systeim

$\mathrm{L} \mathrm{t}\left(\mathrm{S} ; \mathrm{r}_{\mathrm{s}}\right)$ and $\left(\mathrm{T} ; \mathrm{r}_{\mathrm{T}}\right) \mathrm{b}$ solut'ons and :T! Sym(

Theo em: the matतhe o rit ofl sol tions
$\mathrm{L} t\left(\mathrm{~S} ; \mathrm{r}_{\mathrm{S}} ; \mathrm{T} ; \mathrm{r}_{\mathrm{T}} ; ~ ; ~\right) \mathrm{b}$ a matءh d produrt s st m.g08 fft L t

Ra tiঞ la 爪ase

The mat hed rodu t ofilieft non-de enerate lin olluth e olluthon (WMil)
$L t\left(S ; r_{S}\right),\left(T ; r_{T}\right) b l i f t n o n-d g n$ iat insolut'sis solut'on and T

An exam le

Ltr:S S! S Sban insolutis Ift non-d gn iat solut'on. If
; :S! Sym(S) ai d findb u:= u and a:= a, for all a; u 2 S, th n
($\mathrm{S} ; \mathrm{r} ; \mathrm{S} ; \mathrm{r} ; \quad$;) 's a matrh d produrt s st m .

[^0]: \qquad
 Soutioi of tif aig－zaxt i quatioi
 －
 － －
 (natif pioduct

 \qquad
 \qquad
 \qquad
 \qquad

