THE ASYMMETRIC PRODUCT,
A NEW CONSTRUCTION OF RADICAL F-BRACES
Ilaria Colazzo
Università del Salento

Main Results

Let S and T be radical braces, let $b : T \times T \to S$ be a symmetric cocycle on $(T, +)$ with values in $(S, +)$, and suppose there exists an action of the group (S, o) on the radical brace T such that

$$b(t_1, t_2) s + b(t_1 + t_2, t_1) / 2 = b(t_1, t_2) s + b(t_1, t_2) / 2,$$

for all $s \in S$ and $t_1, t_2, t_3 \in T$. Then, the addition and the multiplication over $S \times T$ given by

$$b(s, t_1) + b(s, t_2) = b(s + b(t_1, t_2), t_1 + t_2)$$

$(s, t_1) = (s + b(t_1, t_2), t_1 + t_2)$

define a structure of radical brace on $S \times T$. We call this radical brace the Asymmetric Product of T by S (via b and o) and denote it by $S \ltimes_T T$.

If b is the null cocycle, then $S \ltimes_T T$ is the semidirect product of T by S (see (6) and also (3)).

Remark: The asymmetric product of two F-braces is not in general an F-brace.

If b is the null cocycle, then $S \ltimes_T T$ is the semidirect product of T by S (see (6) and also (3)).

In the case of characteristic 2, the bilinearity of b is not sufficient to obtain an F-brace. We have only a partial result that involves a bilinear map that is the polar form of a quadratic one.

Application

Let F be of characteristic $p \neq 2$, and let S and T be radical F-braces. Let $b : T \times T \to S$ be a bilinear and symmetric map and suppose there exists an action of the group (S, o) on the radical F-brace T that satisfy the condition (1) of the previous theorem. Then the asymmetric product $S \ltimes_T T$ is a radical F-brace with the scalar multiplication given by

$$\lambda(s, t) = \left(\lambda s + \frac{\lambda(\lambda - 1)}{2} b(t_1, t_2), \lambda t\right)$$

for all $\lambda \in F, s \in S$ and $t \in T$.

References

Contact Information:
Ilaria Colazzo
Dipartimento di Matematica e Fisica
Università del Salento
Lecce (Italia)
Email: ilaria.colazzo@unisalento.it
Phone: +39 0832 57683