Regular subgroups of an affine group

Ilaria Colazzo

Università del Salento

GROUP THEORY IN FLORENCE: A MEETING IN HONOUR OF GUIDO ZAPPA

16th – 17th June 2016
Let V be a vector space over a field F. The **affine group** $AGL(V)$ of V is the group generated by $GL(V)$ and $T(V)$, $AGL(V) := GL(V) \rtimes T(V)$, where $GL(V)$ is the group of invertible linear maps of V and $T(V)$ is the translation group of V.

A permutation group G over a set X is called **regular** if, for all $x, y \in X$, there exists a unique $\pi \in G$ such that $x\pi = y$.

Clearly $T(V)$ and its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

Problem [M. W. Liebeck, C. E. Praeger, J. Saxl, 2009]

Find all regular subgroups of $AGL(V)$.
Let V be a vector space over a field F. The affine group $AGL(V)$ of V is the group generated by $GL(V)$ and $T(V)$, $AGL(V) := GL(V) \rtimes T(V)$, where $GL(V)$ is the group of invertible linear maps of V and $T(V)$ is the translation group of V.

A permutation group G over a set X is called regular if, for all $x, y \in X$, there exists a unique $\pi \in G$ such that $x\pi = y$.

Clearly $T(V)$ and its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

Find all regular subgroups of $AGL(V)$.

Ilaria Colazzo: Regular subgroups of an affine group 16th – 17th June 2016 1 / 25
The affine group of a vector space

Let V be a vector space over a field F. The **affine group** $AGL(V)$ of V is the group generated by $GL(V)$ and $T(V)$, $AGL(V) := GL(V) ∋ T(V)$, where $GL(V)$ is the *group of invertible linear maps* of V and $T(V)$ is the *translation group* of V.

A permutation group G over a set X is called **regular** if, for all $x, y ∈ X$, there exists a unique $π ∈ G$ such that $xπ = y$.

Clearly $T(V)$ and its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

Problem [M. W. Liebeck, C. E. Praeger, J. Saxl, 2009]

Find all regular subgroups of $AGL(V)$.
Let V be a vector space over a field F. The affine group $AGL(V)$ of V is the group generated by $GL(V)$ and $T(V)$, $AGL(V) := GL(V) \ltimes T(V)$, where $GL(V)$ is the group of invertible linear maps of V and $T(V)$ is the translation group of V.

A permutation group G over a set X is called regular if, for all $x, y \in X$, there exists a unique $\pi \in G$ such that $x\pi = y$.

Clearly $T(V)$ and its conjugated subgroups by an element of $GL(V)$ are abelian regular subgroups of $AGL(V)$.

Problem [M. W. Liebeck, C. E. Praeger, J. Saxl, 2009]

Find all regular subgroups of $AGL(V)$.

In 2006, A. Caranti, F. Dalla Volta and M. Sala obtained a simple description of all abelian regular subgroups of the affine group $AGL(V)$ in terms of radical commutative associative F-algebras that have V as underlying vector space.

In 2009, F. Catino and R. Rizzo generalized this result obtaining a complete description of all regular subgroups of the affine group $AGL(V)$ in terms of radical F-braces that have V as underlying vector space.
In 2006, A. Caranti, F. Dalla Volta and M. Sala obtained a simple description of all abelian regular subgroups of the affine group $AGL(V)$ in terms of radical commutative associative F-algebras that have V as underlying vector space.

In 2009, F. Catino and R. Rizzo generalized this result obtaining a complete description of all regular subgroups of the affine group $AGL(V)$ in terms of radical F-braces that have V as underlying vector space.
F-brace definition

Definition (F-brace)

Let V be a vector space over a field F and let \cdot an operation on V. We call $V^\bullet := (V, +, \cdot)$ an F-brace if, for all $x, y, z \in V$ and for all $\lambda \in F$, the following conditions hold:

1. $(x + y) \cdot z = x \cdot z + y \cdot z$;
2. $x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z$
3. $\lambda(x \cdot y) = (\lambda x) \cdot y$.

Clearly every associative F-algebra is a F-brace.

On the other hand, every commutative F-brace is an associative F-algebra.
Definition (F-brace)

Let V be a vector space over a field F and let \cdot an operation on V. We call $V^\bullet := (V, +, \cdot)$ an F-brace if, for all $x, y, z \in V$ and for all $\lambda \in F$, the following conditions hold:

1. $(x + y) \cdot z = x \cdot z + y \cdot z$;
2. $x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z$
3. $\lambda(x \cdot y) = (\lambda x) \cdot y$.

Clearly every associative F-algebra is a F-brace.

On the other hand, every commutative F-brace is an associative F-algebra.
F-brace definition

Definition (F-brace)

Let V be a vector space over a field F and let \cdot an operation on V. We call $V^\bullet := (V, +, \cdot)$ an F-brace if, for all $x, y, z \in V$ and for all $\lambda \in F$, the following conditions hold:

1. $(x + y) \cdot z = x \cdot z + y \cdot z$;
2. $x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z$
3. $\lambda(x \cdot y) = (\lambda x) \cdot y$.

Clearly every associative F-algebra is a F-brace.

On the other hand, every commutative F-brace is an associative F-algebra.
Definition (\(F\)-brace)

Let \(V \) be a vector space over a field \(F \) and let \(\cdot \) an operation on \(V \). We call \(V^\bullet := (V, +, \cdot) \) an \(F\)-brace if, for all \(x, y, z \in V \) and for all \(\lambda \in F \), the following conditions hold:

1. \((x + y) \cdot z = x \cdot z + y \cdot z;\)
2. \(x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z\)
3. \(\lambda(x \cdot y) = (\lambda x) \cdot y.\)

Clearly every associative \(F\)-algebra is a \(F\)-brace.

On the other hand, every commutative \(F\)-brace is an associative \(F\)-algebra.
F-brace definition

Definition (F-brace)

Let V be a vector space over a field F and let \cdot an operation on V. We call $V^\bullet := (V, +, \cdot)$ an *F-brace* if, for all $x, y, z \in V$ and for all $\lambda \in F$, the following conditions hold:

1. $(x + y) \cdot z = x \cdot z + y \cdot z$;
2. $x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z$
3. $\lambda(x \cdot y) = (\lambda x) \cdot y$.

Clearly every associative F-algebra is a F-brace.

On the other hand, every commutative F-brace is an associative F-algebra.
Definition (F-brace)

Let V be a vector space over a field F and let \cdot an operation on V. We call $V^* := (V, +, \cdot)$ an F-brace if, for all $x, y, z \in V$ and for all $\lambda \in F$, the following conditions hold:

1. $(x + y) \cdot z = x \cdot z + y \cdot z$;
2. $x \cdot (y + z + y \cdot z) = x \cdot y + x \cdot z + (x \cdot y) \cdot z$
3. $\lambda(x \cdot y) = (\lambda x) \cdot y$.

Clearly every associative F-algebra is a F-brace.

On the other hand, every commutative F-brace is an associative F-algebra.
Let V be an F-brace, as for associative F-algebras, we may introduce the \textit{adjoint operation} on V setting

$$u \circ v := u + v + u \cdot v,$$

for all $u, v \in V$.

In general (V, \circ) is a semigroup. If (V, \circ) is a group, we say that the F-brace V is \textit{radical}.
Let V be an F-brace, as for associative F-algebras, we may introduce the \textit{adjoint operation} on V setting

$$u \circ v := u + v + u \cdot v,$$

for all $u, v \in V$.

In general (V, \circ) is a semigroup. If (V, \circ) is a group, we say that the F-brace V is \textit{radical}.
If V is a radical F-brace and \circ is the adjoint operation then $(V, +)$ is a vector space over F, (V, \circ) is a group and the conditions

$$
(v + w) \circ z + z = v \circ z + w \circ z \quad (1)
$$

$$
\lambda (v \circ w) = (\lambda v) \circ w + (\lambda - 1) w. \quad (2)
$$

hold for all $v, w, z \in V$ and for all $\lambda \in F$. Conversely, if $(V, +)$ and (V, \circ) are a vector space over F and a group respectively that satisfy equations (1) and (2), then posed $v \cdot w := v \circ w - v - w$ for all $v, w \in V$, we have that $(V, +, \cdot)$ is an radical F-brace.
If V is a radical F-brace and \circ is the adjoint operation then $(V, +)$ is a vector space over F, (V, \circ) is a group and the conditions

\[(v + w) \circ z + z = v \circ z + w \circ z\] \hspace{1cm} (1)

\[\lambda(v \circ w) = (\lambda v) \circ w + (\lambda - 1)w.\] \hspace{1cm} (2)

hold for all $v, w, z \in V$ and for all $\lambda \in F$. Conversely, if $(V, +)$ and (V, \circ) are a vector space over F and a group respectively that satisfy equations (1) and (2), then posed $v \cdot w := v \circ w - v - w$ for all $v, w \in V$, we have that $(V, +, \cdot)$ is an radical F-brace.
If V is a radical F-brace and \circ is the adjoint operation then $(V, +)$ is a vector space over F, (V, \circ) is a group and the conditions

\[(v + w) \circ z + z = v \circ z + w \circ z \quad (1)\]
\[\lambda(v \circ w) = (\lambda v) \circ w + (\lambda - 1)w. \quad (2)\]

hold for all $v, w, z \in V$ and for all $\lambda \in F$. Conversely, if $(V, +)$ and (V, \circ) are a vector space over F and a group respectively that satisfy equations (1) and (2), then posed $v \cdot w := v \circ w - v - w$ for all $v, w \in V$, we have that $(V, +, \cdot)$ is an radical F-brace.
Theorem (Catino, Rizzo, 2009)

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of radical F-brace with underlying vector space V and by T the set of all regular subgroups of the affine group $AGL(V)$.

1. Let $V^* \in \mathcal{RB}$. Then
 \[
 T(V^*) = \{ \tau_x | x \in V \},
 \]
 where $\tau_x : V \to V$, $y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The map
 \[
 f : \mathcal{RB} \to T, \quad V^* \mapsto T(V^*)
 \]
 is a bijection.

In this correspondence, isomorphism classes of F-brace correspond to conjugacy classes under the action of $GL(V)$ of regular subgroups of $AGL(V)$.
Theorem (Catino, Rizzo, 2009)

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of radical F-brace with underlying vector space V and by \mathcal{T} the set of all regular subgroups of the affine group $AGL(V)$.

1. Let $V^\bullet \in \mathcal{RB}$. Then

 $$T(V^\bullet) = \{\tau_x | x \in V\},$$

 where $\tau_x : V \rightarrow V, y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The map

 $$f : \mathcal{RB} \rightarrow \mathcal{T}, \quad V^\bullet \mapsto T(V^\bullet)$$

 is a bijection.

In this correspondence, isomorphism classes of F-brace correspond to conjugacy classes under the action of $GL(V)$ of regular subgroups of $AGL(V)$.
Link between radical F-braces and regular subgroups (I)

Theorem (Catino, Rizzo, 2009)

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of radical F-brace with underlying vector space V and by T the set of all regular subgroups of the affine group $AGL(V)$.

1. Let $V^\bullet \in \mathcal{RB}$. Then

 $$T(V^\bullet) = \{\tau_x | x \in V\},$$

 where $\tau_x : V \rightarrow V, y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The map

 $$f : \mathcal{RB} \rightarrow T, \quad V^\bullet \mapsto T(V^\bullet)$$

 is a bijection.

In this correspondence, isomorphism classes of F-brace correspond to conjugacy classes under the action of $GL(V)$ of regular subgroups of $AGL(V)$.
Theorem (Catino, Rizzo, 2009)

Let V be a vector space over a field F. Denote by \mathcal{RB} the class of radical F-brace with underlying vector space V and by \mathcal{T} the set of all regular subgroups of the affine group $AGL(V)$.

1. Let $V^\bullet \in \mathcal{RB}$. Then

 $$T(V^\bullet) = \{\tau_x | x \in V\},$$

 where $\tau_x : V \to V, y \mapsto y \circ x$, is a regular subgroup of the affine group $AGL(V)$.

2. The map

 $$f : \mathcal{RB} \to \mathcal{T}, \quad V^\bullet \mapsto T(V^\bullet)$$

 is a bijection.

In this correspondence, isomorphism classes of F-brace correspond to conjugacy classes under the action of $GL(V)$ of regular subgroups of $AGL(V)$.
Let F be a field, $n \in \mathbb{N}$ and $V := F^n$. By immersion of $AGL(n, F)$ in $GL(n + 1, F)$ and by previous Theorem we have that if

$$T = \left\{ \begin{pmatrix} 1 & v \\ 0 & \gamma_v \end{pmatrix} \bigg| v \in F^n \right\}$$

is a regular subgroup of $AGL(n, F)$, then there exists a unique radical F-brace V^\bullet such that $T = T(V^\bullet)$.

Moreover the adjoint operation on V^\bullet is

$$v \circ w = v \gamma_w + w = v \gamma_w t_w = v \tau_w,$$

for all $v, w \in V$.

That is, fixed a regular subgroup T of the affine group $AGL(n, F)$, there exists a unique radical F-brace on F^n such that its adjoint group is isomorphic to T.
Let F be a field, $n \in \mathbb{N}$ and $V := F^n$. By immersion of $AGL(n, F)$ in $GL(n + 1, F)$ and by previous Theorem we have that if

$$T = \left\{ \begin{pmatrix} 1 & v \\ 0 & \gamma_v \end{pmatrix} \Bigg| v \in F^n \right\}$$

is a regular subgroup of $AGL(n, F)$, then there exists a unique radical F-brace V^\bullet such that $T = T(V^\bullet)$.

Moreover the adjoint operation on V^\bullet is

$$v \circ w = v\gamma_w + w = v\gamma_w t_w = v\tau_w,$$

for all $v, w \in V$.

That is, fixed a regular subgroup T of the affine group $AGL(n, F)$, there exists a unique radical F-brace on F^n such that its adjoint group is isomorphic to T.
Let F be a field, $n \in \mathbb{N}$ and $V := F^n$. By immersion of $AGL(n, F)$ in $GL(n + 1, F)$ and by previous Theorem we have that if

$$T = \left\{ \begin{pmatrix} 1 & \nu \\ 0 & \gamma \nu \end{pmatrix} \middle| \nu \in F^n \right\}$$

is a regular subgroup of $AGL(n, F)$, then there exists a unique radical F-brace V^\bullet such that $T = T(V^\bullet)$.

Moreover the adjoint operation on V^\bullet is

$$v \circ w = v\gamma_w + w = v\gamma_w t_w = v\tau_w,$$

for all $v, w \in V$.

That is, fixed a regular subgroup T of the affine group $AGL(n, F)$, there exists a unique radical F-brace on F^n such that its adjoint group is isomorphic to T.
For example, let F be a field and let τ an endomorphism of the additive group of F. It is easy to see that the group

$$G = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & x\tau \\ 0 & 0 & 1 \end{pmatrix} \bigg| \ x, y \in F \right\}$$

(3)

is a regular subgroup of the affine group $AGL(2, F)$

By previous result this, is in correspondence with the F-brace with underling vector space F^2 such that

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_1) \circ (x_2, y_2) = (x_1, y_1) \begin{pmatrix} 1 & x_2\tau \\ 0 & 1 \end{pmatrix} + (x_2, y_2) = (x_1 + x_2, x_1(x_2\tau) + y_1 + y_2)$$

for all $(x_1, y_1), (x_2, y_2) \in F^2$.
Conversely, if V^\bullet is a radical F-brace, set $\gamma_w : V \to V$, $v \mapsto v \circ w - w$, for all $w \in V$, and consider

$$T = \left\{ \begin{pmatrix} 1 & v \\ 0 & \gamma_v \end{pmatrix} \middle| v \in V \right\},$$

it is a regular subgroup of $AGL(n, F)$ and it is isomorphic to the adjoint group of the radical F-brace V^\bullet.
Conversely, if V^\bullet is a radical F-brace, set $\gamma_w : V \to V$, $v \mapsto v \circ w - w$, for all $w \in V$, and consider

$$T = \left\{ \begin{pmatrix} 1 & v \\ 0 & \gamma_v \end{pmatrix} \bigg| v \in V \right\},$$

it is a regular subgroup of $AGL(n, F)$ and it is isomorphic to the adjoint group of the radical F-brace V^\bullet.
Conversely, if V^\bullet is a radical F-brace, set $\gamma_w : V \to V$, $v \mapsto v \circ w - w$, for all $w \in V$, and consider

$$T = \left\{ \begin{pmatrix} 1 & v \\ 0 & \gamma_v \end{pmatrix} \middle| v \in V \right\},$$

it is a regular subgroup of $AGL(n, F)$ and it is isomorphic to the adjoint group of the radical F-brace V^\bullet.
Link between radical F-brace and regular subgroup (IV)

For example, if we consider the previous F-brace with underlying vector space F^2 such that

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_1) \circ (x_2, y_2) = (x_1 + x_2, x_1(x_2 \tau) + y_1 + y_2)$$

with τ an endomorphism of the additive group of F and $x_1, x_2, y_1, y_2 \in F$ we may compute the regular subgroup of $AGL(2, F)$ corresponding to this F-brace.

In fact, let $\{(1, 0), (0, 1)\}$ be the canonical basis of F^2. Then, for all x, y

$$(1, 0) \gamma_{(x,y)} = (1, 0) \circ (x, y) - (x, y) = (1 + x, x \tau + y) - (x, y) = (1, x \tau)$$

$$(0, 1) \gamma_{(x,y)} = (0, 1) \circ (x, y) - (x, y) = (x, 1 + y) - (x, y) = (0, 1)$$

and so the regular subgroup is

$$G = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & x \tau \\ 0 & 0 & 1 \end{pmatrix} \bigg| x, y \in F \right\},$$

the initial regular subgroup.
Link between radical F-brace and regular subgroup (IV)

For example, if we consider the previous F-brace with underlying vector space F^2 such that

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_1) \circ (x_2, y_2) = (x_1 + x_2, x_1(x_2\tau) + y_1 + y_2)$$

with τ an endomorphism of the additive group of F and $x_1, x_2, y_1, y_2 \in F$ we may compute the regular subgroup of $AGL(2, F)$ corresponding to this F-brace. In fact, let $\{(1, 0), (0, 1)\}$ be the canonical basis of F^2 Then, for all x, y

$$(1, 0) \gamma_{(x, y)} = (1, 0) \circ (x, y) - (x, y) = (1 + x, x\tau + y) - (x, y) = (1, x\tau)$$

$$(0, 1) \gamma_{(x, y)} = (0, 1) \circ (x, y) - (x, y) = (x, 1 + y) - (x, y) = (0, 1)$$

and so the regular subgroup is

$$G = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & x\tau \\ 0 & 0 & 1 \end{pmatrix} \mid x, y \in F \right\},$$

the initial regular subgroup.
Link between radical F-brace and regular subgroup (IV)

For example, if we consider the previous F-brace with underlying vector space F^2 such that

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(x_1, y_1) \circ (x_2, y_2) = (x_1 + x_2, x_1(x_2 \tau) + y_1 + y_2)$$

with τ an endomorphism of the additive group of F and $x_1, x_2, y_1, y_2 \in F$ we may compute the regular subgroup of $AGL(2, F)$ corresponding to this F-brace. In fact, let $\{(1, 0), (0, 1)\}$ be the canonical basis of F^2 Then, for all x, y

$$(1, 0)\gamma_{(x,y)} = (1, 0) \circ (x, y) - (x, y) = (1 + x, x\tau + y) - (x, y) = (1, x\tau)$$

$$(0, 1)\gamma_{(x,y)} = (0, 1) \circ (x, y) - (x, y) = (x, 1 + y) - (x, y) = (0, 1)$$

and so the regular subgroup is

$$G = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & x\tau \\ 0 & 0 & 1 \end{pmatrix} \middle| \begin{array}{c} x, y \in F \end{array} \right\},$$

the initial regular subgroup.
A cohomological approach

We introduce some cohomological tools in analogy with the method employed by W. A. de Graaf for the classification of nilpotent associative algebras of dimensions 2 and 3 over any field. In particular, we translate the concepts of “2-cocycles” and the “Hochschild product” from the context of associative F-algebras into that of F-braces.

In this way we obtain a description of all finite dimensional radical F-braces with non-trivial annihilator.
A cohomological approach

We introduce some cohomological tools in analogy with the method employed by W. A. de Graaf for the classification of nilpotent associative algebras of dimensions 2 and 3 over any field. In particular, we translate the concepts of “2-cocycles” and the “Hochschild product” from the context of associative F-algebras into that of F-braces.

In this way we obtain a description of all finite dimensional radical F-braces with non-trivial annihilator.
We define the set of **right annihilator** of an F-brace V and that of **left annihilator** respectively as follows:

\[
Ann_R(V) := \{ x \mid x \in V, \forall v \in V, \forall \lambda \in F \ v \cdot (\lambda x) = 0 \}
\]

and

\[
Ann_L(V) := \{ x \mid x \in V, \forall v \in V, x \cdot v = 0 \}.
\]

These sets are subspaces of V. Note that the previous definitions of left and right annihilator cannot be symmetric, since in general, if $v, w \in V$ and $\lambda \in F$, then $v \cdot (\lambda w) \neq \lambda(v \cdot w)$.

The set $Ann(V) := Ann_L(V) \cap Ann_R(V)$ is called the **annihilator** of the F-brace V.
The annihilator of an F-brace

We define the set of *right annihilator* of an F-brace V and that of *left annihilator* respectively as follows:

$$\text{Ann}_R(V) := \{ x \mid x \in V, \forall v \in V, \forall \lambda \in F \cdot v \cdot (\lambda x) = 0 \}$$

and

$$\text{Ann}_L(V) := \{ x \mid x \in V, \forall v \in V, x \cdot v = 0 \}.$$

These sets are subspaces of V. Note that the previous definitions of left and right annihilator cannot be symmetric, since in general, if $v, w \in V$ and $\lambda \in F$, then $v \cdot (\lambda w) \neq \lambda (v \cdot w)$.

The set $\text{Ann}(V) := \text{Ann}_L(V) \cap \text{Ann}_R(V)$ is called the *annihilator* of the F-brace V.

We define the set of \textit{right annihilator} of an F-brace V and that of \textit{left annihilator} respectively as follows:

\[
\text{Ann}_R(V) := \{ x \mid x \in V, \forall \ v \in V, \forall \ \lambda \in F \ v \cdot (\lambda x) = 0 \}
\]

and

\[
\text{Ann}_L(V) := \{ x \mid x \in V, \forall \ v \in V, x \cdot v = 0 \}.
\]

These sets are subspaces of V. Note that the previous definitions of left and right annihilator cannot be symmetric, since in general, if $v, w \in V$ and $\lambda \in F$, then $v \cdot (\lambda w) \neq \lambda (v \cdot w)$.

The set $\text{Ann}(V) := \text{Ann}_L(V) \cap \text{Ann}_R(V)$ is called the \textit{annihilator} of the F-brace V.
2-cocycles of F-braces

Definition

Let A be an F-brace and V a vector space over a field F. A map $\theta : A \times A \to V$ with the properties:

1. $(\lambda a + \mu b, c)\theta = \lambda ((a, c)\theta) + \mu ((b, c)\theta)$,
2. $(a, b + c + b \cdot c)\theta = (a, b)\theta + (a, c)\theta + (a \cdot b, c)\theta$,

for all $a, b, c \in A$ and $\lambda, \mu \in F$, is called a 2-cocycle of A with values in V.

Thus 2-cocycles of F-algebras [see for instance, R. S. Pierce, *Associative Algebras*] are particular cases of 2-cocycles of F-braces. But if we regard an F-algebra as an F-brace, then a 2-cocycle in the sense of the previous definition is not necessarily a 2-cocycle in the usual sense.
2-cocycles of F-braces

Definition

Let A be an F-brace and V a vector space over a field F. A map $\theta : A \times A \rightarrow V$ with the properties:

1. $(\lambda a + \mu b, c)\theta = \lambda((a, c)\theta) + \mu((b, c)\theta)$,
2. $(a, b + c + b \cdot c)\theta = (a, b)\theta + (a, c)\theta + (a \cdot b, c)\theta$,

for all $a, b, c \in A$ and $\lambda, \mu \in F$, is called a 2-cocycle of A with values in V.

Thus 2-cocycles of F-algebras [see for instance, R. S. Pierce, *Associative Algebras*] are particular cases of 2-cocycles of F-braces. But if we regard an F-algebra as an F-brace, then a 2-cocycle in the sense of the previous definition is not necessarily a 2-cocycle in the usual sense.
2-cocycles of F-braces

Definition

Let A be an F-brace and V a vector space over a field F. A map $\theta : A \times A \rightarrow V$ with the properties:

1. $(\lambda a + \mu b, c)\theta = \lambda((a, c)\theta) + \mu((b, c)\theta)$,
2. $(a, b + c + b \cdot c)\theta = (a, b)\theta + (a, c)\theta + (a \cdot b, c)\theta$,

for all $a, b, c \in A$ and $\lambda, \mu \in F$, is called a **2-cocycle** of A with values in V.

Thus 2-cocycles of F-algebras [see for instance, R. S. Pierce, *Associative Algebras*] are particular cases of 2-cocycles of F-braces. But if we regard an F-algebra as an F-brace, then a 2-cocycle in the sense of the previous definition is not necessarily a 2-cocycle in the usual sense.
Let N be the zero F-algebra of dimension n over a field F and τ an endomorphism of the additive group of F. Then the map

$$\theta : N \times N \rightarrow F, \left(\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{n} y_i e_i \right) \mapsto \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right) \tau$$

is a 2-cocycle of the F-brace N but, in general, not of the F-algebra N.

In particular, θ is a 2-cocycle of the n-dimensional zero F-algebra if and only if τ is linear.
Example

Let N be the zero F-algebra of dimension n over a field F and τ an endomorphism of the additive group of F. Then the map

$$\theta : N \times N \rightarrow F, \left(\sum_{i=1}^{n} x_i e_i, \sum_{i=1}^{n} y_i e_i\right) \mapsto \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right) \tau$$

is a 2-cocycle of the F-brace N but, in general, not of the F-algebra N.

In particular, θ is a 2-cocycle of the n-dimensional zero F-algebra if and only if τ is linear.
Hochschild product

Definition

Let \(A \) be an \(F \)-brace, \(V \) an \(F \)-vector space, \(\theta : A \times A \to V \) a 2-cocycle. Put \(A_\theta := A \oplus V \). For all \(a, b \in A \) and \(v, w \in V \) we define

\[
(a + v) \cdot (b + w) := a \cdot b + (a, b)\theta.
\]

(5)

The \(F \)-brace \(A_\theta \) is called a **Hochschild product** of \(A \) by \(V \).

What may we say of \(A_\theta \) if \(A \) is a radical \(F \)-brace?

If \(A \) is a radical \(F \)-brace and \(\theta \) is a 2-cocycle of \(A \) with values in an \(F \)-vector space \(V \). Then \(A_\theta \) is radical.
Hochschild product

Definition

Let A be an F-brace, V an F-vector space, $\theta : A \times A \to V$ a 2-cocycle. Put $A_\theta := A \oplus V$. For all $a, b \in A$ and $v, w \in V$ we define

$$(a + v) \cdot (b + w) := a \cdot b + (a, b)\theta.$$ (5)

The F-brace A_θ is called a **Hochschild product** of A by V.

What may we say of A_θ if A is a radical F-brace?

If A is a radical F-brace and θ is a 2-cocycle of A with values in an F-vector space V. Then A_θ is radical.
Hochschild product

Definition

Let A be an F-brace, V an F-vector space, $\theta : A \times A \to V$ a 2-cocycle. Put $A_\theta := A \oplus V$. For all $a, b \in A$ and $v, w \in V$ we define

$$(a + v) \cdot (b + w) := a \cdot b + (a, b)\theta. \quad (5)$$

The F-brace A_θ is called a **Hochschild product** of A by V.

What may we say of A_θ if A is a radical F-brace?

If A is a radical F-brace and θ is a 2-cocycle of A with values in an F-vector space V. Then A_θ is radical.

Let B be a radical F-brace such that $\text{Ann}(B) \neq \{0\}$. Then there exist an F-brace A, an F-vector space V and a 2-cocycle $\theta : A \times A \to V$ such that B is isomorphic to A_θ.

We consider $A := B/\text{Ann}(B)$, $V := \text{Ann}(B)$.

If $\pi : B \to A$ be the projection map and we choose a linear map $\sigma : A \to B$ such that $(x\sigma)\pi = x$, for all $x \in A$, then we obtain a function θ from $A \times A$ into V by defining

$$ (x, y)\theta := x\sigma \cdot y\sigma - (x \cdot y)\sigma. \quad (6) $$

that is a 2-cocycle.
Description of F-braces with non-trivial annihilator (I)

Let B be a radical F-brace such that $\text{Ann}(B) \neq \{0\}$. Then there exist an F-brace A, an F-vector space V and a 2-cocycle $\theta : A \times A \rightarrow V$ such that B is isomorphic to A_θ.

We consider $A := B/\text{Ann}(B)$, $V := \text{Ann}(B)$.

If $\pi : B \rightarrow A$ be the projection map and we choose a linear map $\sigma : A \rightarrow B$ such that $(x\sigma)\pi = x$, for all $x \in A$, then we obtain a function θ from $A \times A$ into V by defining

$$(x, y)\theta := x\sigma \cdot y\sigma - (x \cdot y)\sigma. \quad (6)$$

that is a 2-cocycle.

Let B be a radical F-brace such that $\text{Ann}(B) \neq \{0\}$. Then there exist an F-brace A, an F-vector space V and a 2-cocycle $\theta : A \times A \to V$ such that B is isomorphic to A_{θ}.

We consider $A := B/\text{Ann}(B)$, $V := \text{Ann}(B)$.
If $\pi : B \to A$ be the projection map and we choose a linear map $\sigma : A \to B$ such that $(x\sigma)\pi = x$, for all $x \in A$, then we obtain a function θ from $A \times A$ into V by defining

$$(x, y)\theta := x\sigma \cdot y\sigma - (x \cdot y)\sigma. \quad (6)$$

that is a 2-cocycle.
The regular subgroups of an affine group obtained by the Hochschild product of radical F-braces have non-trivial intersection with the translation group.

Proposition (F. Catino, R. Rizzo, 2009)

Let V^* be a radical F-brace with underlying vector space V over a field F. Let $T(V^*) = \{(\gamma_a, a) \mid a \in V\}$ and $T(V)$ be the translation group. Then

$$T(V) \cap T(V^*) = \{(\gamma_a, a) \mid a \in \text{Soc}(V^*)\},$$

where $\text{Soc}(V^*) := \{x \mid x \in V, \forall v \in V \ v \cdot x = 0\}$ is the socle of V.

Let us note that $\text{Ann}_R(V) \subseteq \text{Soc}(V)$.

In particular, if V^* is a radical associative F-algebra of finite dimension, then $T(V) \cap T(V^*) \neq 1$.
The regular subgroups of an affine group obtained by the Hochschild product of radical F-braces have non-trivial intersection with the translation group.

Proposition (F. Catino, R. Rizzo, 2009)

Let V^\bullet be a radical F-brace with underlying vector space V over a field F. Let $T(V^\bullet) = \{ (\gamma_a, a) \mid a \in V \}$ and $T(V)$ be the translation group. Then

$$T(V) \cap T(V^\bullet) = \{ (\gamma_a, a) \mid a \in \text{Soc}(V^\bullet) \}, \quad (7)$$

where $\text{Soc}(V^\bullet) := \{ x \mid x \in V, \forall v \in V v \cdot x = 0 \}$ is the socle of V.

Let us note that $\text{Ann}_R(V) \subseteq \text{Soc}(V)$.

In particular, if V^\bullet is a radical associative F-algebra of finite dimension, then $T(V) \cap T(V^\bullet) \neq 1$.
The intersection with the translation group (I)

The regular subgroups of an affine group obtained by the Hochschild product of radical F-braces have non-trivial intersection with the translation group.

Proposition (F. Catino, R. Rizzo, 2009)

Let V^\bullet be a radical F-brace with underlying vector space V over a field F. Let $T(V^\bullet) = \{(\gamma_a, a) \mid a \in V\}$ and $T(V)$ be the translation group. Then

$$T(V) \cap T(V^\bullet) = \{(\gamma_a, a) \mid a \in \text{Soc}(V^\bullet)\},$$

(7)

where $\text{Soc}(V^\bullet) := \{x \mid x \in V, \forall v \in V \ v \cdot x = 0\}$ is the socle of V.

Let us note that $\text{Ann}_R(V) \subseteq \text{Soc}(V)$.

In particular, if V^\bullet is a radical associative F-algebra of finite dimension, then $T(V) \cap T(V^\bullet) \neq 1$.
The regular subgroups of an affine group obtained by the Hochschild product of radical F-braces have non-trivial intersection with the translation group.

Proposition (F. Catino, R. Rizzo, 2009)

Let V^\bullet be a radical F-brace with underlying vector space V over a field F. Let $T(V^\bullet) = \{(\gamma_a, a) \mid a \in V\}$ and $T(V)$ be the translation group. Then

$$T(V) \cap T(V^\bullet) = \{(\gamma_a, a) \mid a \in \text{Soc}(V^\bullet)\}, \quad (7)$$

where $\text{Soc}(V^\bullet) := \{x \mid x \in V, \forall v \in V \ v \cdot x = 0\}$ is the socle of V.

Let us note that $\text{Ann}_R(V) \subseteq \text{Soc}(V)$.

In particular, if V^\bullet is a radical associative F-algebra of finite dimension, then $T(V) \cap T(V^\bullet) \neq 1$.
The intersection with the translation group (II)

The Hochschild Product of radical F-braces is not exhaustive because there are examples of subgroups of affine group with trivial intersection with the translations as the following:

Theorem (P. Hegedűs, 2000)

Let p be a prime. If $p = 2$ then assume $n = 3$, or $n \geq 5$. If p is odd then assume $n \geq 4$. Then the affine group $AGL(n, p)$ has a regular subgroup which contains no translations other than the identity.
Let p be a prime and $n \in \mathbb{N}$, if p is odd, let $n \geq 4$ otherwise if $p = 2$, let $n \geq 3$ odd. Over the field \mathbb{F}_p of p elements. Consider the immersion of $AGL(n, p)$ into $GL(n + 1, p)$ and let

- $q : \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be a non-degenerate quadratic form;
- $b : \mathbb{F}_p^{n-1} \times \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be the symmetric bilinear form associated to q;
- X the matrix associated to b respect to a fixed basis $((v + w)q = vq + wq + vXw^T$ for all $v, w \in \mathbb{F}_p^{n-1}$);
- A the orthogonal non-singular matrix $(n - 1) \times (n - 1)$ of order p ($XA^T = A^{-1}X$) and such that $vq = (vA)q$ for all $v \in \mathbb{F}_p^{n-1}$.
Let p be a prime and $n \in \mathbb{N}$, if p is odd, let $n \geq 4$ otherwise if $p = 2$, let $n \geq 3$ odd. Over the field \mathbb{F}_p of p elements. Consider the immersion of $AGL(n, p)$ into $GL(n + 1, p)$ and let

- $q : \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be a non-degenerate quadratic form;
- $b : \mathbb{F}_p^{n-1} \times \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be the symmetric bilinear form associated to q;
- X the matrix associated to b respect to a fixed basis $((v + w)q = vq + wq + vXw^T$ for all $v, w \in \mathbb{F}_p^{n-1})$;
- A the orthogonal non-singular matrix $(n - 1) \times (n - 1)$ of order p $(XA^T = A^{-1}X)$ and such that $vq = (vA)q$ for all $v \in \mathbb{F}_p^{n-1}$.
Hegedűs’ subgroups (I)

Let p be a prime and $n \in \mathbb{N}$, if p is odd, let $n \geq 4$ otherwise if $p = 2$, let $n \geq 3$ odd. Over the field \mathbb{F}_p of p elements. Consider the immersion of $AGL(n, p)$ into $GL(n+1, p)$ and let

- $q : \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be a non-degenerate quadratic form;
- $b : \mathbb{F}_p^{n-1} \times \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be the symmetric bilinear form associated to q;
- X the matrix associated to b respect to a fixed basis $((v + w)q = vq + wq + vXw^T$ for all $v, w \in \mathbb{F}_p^{n-1})$;
- A the orthogonal non-singular matrix $(n-1) \times (n-1)$ of order p $(XA^T = A^{-1}X)$ and such that $vq = (vA)q$ for all $v \in \mathbb{F}_p^{n-1}$.
Let p be a prime and $n \in \mathbb{N}$, if p is odd, let $n \geq 4$ otherwise if $p = 2$, let $n \geq 3$ odd. Over the field \mathbb{F}_p of p elements. Consider the immersion of $AGL(n, p)$ into $GL(n + 1, p)$ and let

- $q : \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be a non-degenerate quadratic form;
- $b : \mathbb{F}_p^{n-1} \times \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be the symmetric bilinear form associated to q;
- X the matrix associated to b respect to a fixed basis $((v + w)q = vq + wq + vXw^T$ for all $v, w \in \mathbb{F}_p^{n-1}$);
- A the orthogonal non-singular matrix $(n - 1) \times (n - 1)$ of order p $(XA^T = A^{-1}X)$ and such that $vq = (vA)q$ for all $v \in \mathbb{F}_p^{n-1}$.
Let p be a prime and $n \in \mathbb{N}$, if p is odd, let $n \geq 4$ otherwise if $p = 2$, let $n \geq 3$ odd. Over the field \mathbb{F}_p of p elements. Consider the immersion of $AGL(n, p)$ into $GL(n+1, p)$ and let

- $q : \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be a non-degenerate quadratic form;
- $b : \mathbb{F}_p^{n-1} \times \mathbb{F}_p^{n-1} \to \mathbb{F}_p$ be the symmetric bilinear form associated to q;
- X the matrix associated to b respect to a fixed basis $((v + w)q = vq + wq + vXw^T$ for all $v, w \in \mathbb{F}_p^{n-1})$;
- A the orthogonal non-singular matrix $(n - 1) \times (n - 1)$ of order p ($XA^T = A^{-1}X$) and such that $vq = (vA)q$ for all $v \in \mathbb{F}_p^{n-1}$.

Ilaria Colazzo: Regular subgroups of an affine group
Hegedűs’ subgroups (II)

Then the set

\[T := \left\{ \left(\begin{array}{ccc} 1 & m & v \\ 0 & 1 & 0 \\ 0 & A^m X w^T & A^m \end{array} \right) \middle| m \in \mathbb{F}_p, v \in \mathbb{F}_{p}^{n-1} \right\}. \]

is a regular subgroup of the affine group $AGL(n, p)$ that has trivial intersection with the translation group.

In 2016, F. Catino, I. C., P. Stefanelli, *J. Algebra* 455 (2016), 164–182, introduced a construction of radical F-braces that has as very particular case a generalization of the Hegedűs’ subgroup.
Then the set

\[T := \left\{ \begin{pmatrix} 1 & m & v \\ 0 & 1 & 0 \\ 0 & A^m X w^T & A^m \end{pmatrix} \mid m \in \mathbb{F}_p, v \in \mathbb{F}^{n-1}_p \right\} \]

is a regular subgroup of the affine group $AGL(n, p)$ that has trivial intersection with the translation group.

In 2016, F. Catino, I. C., P. Stefanelli, *J. Algebra* 455 (2016), 164–182, introduced a construction of radical F-braces that has as very particular case a generalization of the Hegedűs’ subgroup.
Then the set

$$T := \left\{ \begin{pmatrix} 1 & m & v \\ 0 & 1 & 0 \\ 0 & A^m X w^T & A^m \end{pmatrix} \right| m \in \mathbb{F}_p, v \in \mathbb{F}_p^{n-1} \right\}.$$

is a regular subgroup of the affine group $AGL(n, p)$ that has trivial intersection with the translation group.

In 2016, F. Catino, I. C., P. Stefanelli, *J. Algebra* 455 (2016), 164–182, introduced a construction of radical F-braces that has as very particular case a generalization of the Hegedűs’ subgroup.
Let

- F be a field;
- V be a n-dimensional vector space over F (reviewed as zero F-brace);
- $q : V \rightarrow F$ be a quadratic form and $b : V \times V \rightarrow F$ the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(V)$ be a group homomorphism from $(F, +)$ to the automorphism group of the F-brace V.

If

$$(v^s)q = (v)q$$

holds for all $v \in V$ and $s \in F$, then we may define over $F \times V$ a structure of radical F-brace.
The Asymmetric Product of zero F-braces (I)

Let

- F be a field;
- V be a n-dimensional vector space over F (reviewed as zero F-brace);
- $q : V \rightarrow F$ be a quadratic form and $b : V \times V \rightarrow F$ the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(V)$ be a group homomorphism from $(F, +)$ to the automorphism group of the F-brace V.

If

\[(v^s)q = (v)q\] \hspace{1cm} (8)

holds for all $v \in V$ and $s \in F$, then we may define over $F \times V$ a structure of radical F-brace.
Let

- F be a field;
- V be a n-dimensional vector space over F (reviewed as zero F-brace);
- $q : V \rightarrow F$ be a quadratic form and $b : V \times V \rightarrow F$ the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(V)$ be a group homomorphism from $(F, +)$ to the automorphism group of the F-brace V.

If

$$(v^s)q = (v)q$$

holds for all $v \in V$ and $s \in F$, then we may define over $F \times V$ a structure of radical F-brace.
Let

- F be a field;
- V be a n-dimensional vector space over F (reviewed as zero F-brace);
- $q : V \rightarrow F$ be a quadratic form and $b : V \times V \rightarrow F$ the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(V)$ be a group homomorphism from $(F, +)$ to the automorphism group of the F-brace V.

If

$$(v^s)q = (v)q$$

holds for all $v \in V$ and $s \in F$, then we may define over $F \times V$ a structure of radical F-brace.
Let

- F be a field;
- V be a n-dimensional vector space over F (reviewed as zero F-brace);
- $q : V \rightarrow F$ be a quadratic form and $b : V \times V \rightarrow F$ the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(V)$ be a group homomorphism from $(F, +)$ to the automorphism group of the F-brace V.

If

$$ (v^s)q = (v)q $$ \hspace{1cm} (8)

holds for all $v \in V$ and $s \in F$, then we may define over $F \times V$ a structure of radical F-brace.
Let

- \(F \) be a field;
- \(V \) be a \(n \)-dimensional vector space over \(F \) (reviewed as zero \(F \)-brace);
- \(q : V \to F \) be a quadratic form and \(b : V \times V \to F \) the polar form of \(q \);
- \(\alpha : F \to \text{Aut}(V) \) be a group homomorphism from \((F, +) \) to the automorphism group of the \(F \)-brace \(V \).

If

\[
\left(v^s\right)q = (v)q
\]

(8)

holds for all \(v \in V \) and \(s \in F \), then we may define over \(F \times V \) a structure of radical \(F \)-brace.
Let

- F be a field;
- V be a n-dimensional vector space over F (reviewed as zero F-brace);
- $q : V \rightarrow F$ be a quadratic form and $b : V \times V \rightarrow F$ the polar form of q;
- $\alpha : F \rightarrow \text{Aut}(V)$ be a group homomorphism from $(F, +)$ to the automorphism group of the F-brace V.

If

$$(v^s)q = (v)q$$

holds for all $v \in V$ and $s \in F$, then we may define over $F \times V$ a structure of radical F-brace.
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\begin{align*}
(s_1, v_1) + (s_2, v_2) &= (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2) \\
(s_1, v_1) \circ (s_2, v_2) &= (s_1 \circ s_2, v_1^{s_2} + v_2) \\
\lambda(s_1, v_1) &= (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1)
\end{align*}

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the \textit{Asymmetric Product} of V by F (denoted by $F \triangleleft \circ V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \triangleleft \circ V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \to F$ (the quadratic form $q : V \to F$, respectively) is non-degenerate and the action $\alpha : F \to \text{Aut}(V)$ is faithful.
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication:

\[(s_1, v_1) + (s_2, v_2) = (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2)\] \hfill (9)

\[(s_1, v_1) \circ (s_2, v_2) = (s_1 \circ s_2, v_1^{s_2} + v_2)\] \hfill (10)

\[\lambda(s_1, v_1) = (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1)\] \hfill (11)

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the **Asymmetric Product** of V by F (denoted by $F \ltimes_{\circ} V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \ltimes_{\circ} V$ intersects trivially the translation group if and only if the symmetric bilinear form

\[b : V \times V \rightarrow F\] (the quadratic form $q : V \rightarrow F$, respectively) is non-degenerate and the action $\alpha : F \rightarrow \text{Aut}(V)$ is faithful.

\[\lambda(s_1, v_1) = (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1)\] \hfill (11)
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\[(s_1, v_1) + (s_2, v_2) = (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2) \quad (9)\]
\[(s_1, v_1) \circ (s_2, v_2) = (s_1 \circ s_2, v_1^{s_2} + v_2) \quad (10)\]
\[\lambda(s_1, v_1) = (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1) \quad (11)\]

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the Asymmetric Product of V by F (denoted by $F \ltimes V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \ltimes V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \to F$ (the quadratic form $q : V \to F$, respectively) is non-degenerate and the action $\alpha : F \to \text{Aut}(V)$ is faithful.
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\begin{align}
(s_1, v_1) + (s_2, v_2) &= (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2) \quad (9) \\
(s_1, v_1) \circ (s_2, v_2) &= (s_1 \circ s_2, v_1^{s_2} + v_2) \quad (10) \\
\lambda(s_1, v_1) &= (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1) \quad (11)
\end{align}

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the Asymmetric Product of V by F (denoted by $F \times_v V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \times_v V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \to F$ (the quadratic form $q : V \to F$, respectively) is non-degenerate and the action $\alpha : F \to \text{Aut}(V)$ is faithful.
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\[(s_1, v_1) + (s_2, v_2) = (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2) \quad (9)\]
\[(s_1, v_1) \circ (s_2, v_2) = (s_1 \circ s_2, v_1^{s_2} + v_2) \quad (10)\]
\[\lambda(s_1, v_1) = (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1) \quad (11)\]

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the Asymmetric Product of V by F (denoted by $F \bowtie V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \bowtie V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \rightarrow F$ (the quadratic form $q : V \rightarrow F$, respectively) is non-degenerate and the action $\alpha : F \rightarrow \text{Aut}(V)$ is faithful.
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\[(s_1, v_1) + (s_2, v_2) = (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2)\] (9)
\[(s_1, v_1) \circ (s_2, v_2) = (s_1 \circ s_2, v_1^{s_2} + v_2)\] (10)
\[\lambda(s_1, v_1) = (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1)\] (11)

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the **Asymmetric Product** of V by F (denoted by $F \ltimes_0 V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \ltimes_0 V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \to F$ (the quadratic form $q : V \to F$, respectively) is non-degenerate and the action $\alpha : F \to \text{Aut}(V)$ is faithful.
The Asymmetric Product of zero F-braces (II)

Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\[(s_1, v_1) + (s_2, v_2) = (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2) \quad (9)\]

\[(s_1, v_1) \circ (s_2, v_2) = (s_1 \circ s_2, v_1^{s_2} + v_2) \quad (10)\]

\[\lambda(s_1, v_1) = (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1) \quad (11)\]

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the \textbf{Asymmetric Product} of V by F (denoted by $F \ltimes \circ V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n+1, F)$ associated with $F \ltimes \circ V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \to F$ (the quadratic form $q : V \to F$, respectively) is non-degenerate and the action $\alpha : F \to \text{Aut}(V)$ is faithful.
Set the sum, the multiplication over $F \times V$ and the scalar multiplication

\begin{align*}
(s_1, v_1) + (s_2, v_2) &= (s_1 + s_2 + (v_1, v_2)b, v_1 + v_2) \\
(s_1, v_1) \circ (s_2, v_2) &= (s_1 \circ s_2, v_1^{s_2} + v_2) \\
\lambda(s_1, v_1) &= (\lambda s_1 + \lambda(\lambda - 1)(v_1)q, \lambda v_1)
\end{align*}

(9) \hspace{1cm} (10) \hspace{1cm} (11)

for all $(s_1, v_1), (s_2, v_2) \in S \times V$ and $\lambda \in F$. This radical F-brace is called the **Asymmetric Product** of V by F (denoted by $F \ltimes \circ V$).

In this cases we may check the intersection of the regular subgroup associated to the radical F-brace with the translation group through properties of b and α.

The regular subgroup of $AGL(n + 1, F)$ associated with $F \ltimes \circ V$ intersects trivially the translation group if and only if the symmetric bilinear form $b : V \times V \to F$ (the quadratic form $q : V \to F$, respectively) is non-degenerate and the action $\alpha : F \to \text{Aut}(V)$ is faithful.
Let p be a prime and $n \geq 4$ (if p is odd) or $n \geq 4$ even (if $p = 2$). Set $V = \mathbb{F}_{p^m}$ and consider

1. $q : V \to \mathbb{F}_{p^m}$ an isotropic quadratic form such that its polar form b is non-degenerate.
2. $A_1, \ldots, A_m \in O(V, q) = \{ A \in GL(n, p^m) \mid \forall v \in \mathbb{F}_{p^m} \quad vq = (vA)q \}$ distinct of order p that commutes two by two.
3. $\alpha : \mathbb{F}_{p^m} = \bigoplus_{i=1}^m \langle \omega_i \rangle \longrightarrow GL(n, \mathbb{F}_{p^m})$ a group homomorphism such that $\omega_i \alpha = A_i$ (α is clearly injective)

Then b and α are compatible and we may consider the radical brace over \mathbb{F}_{p^m} asymmetric product $\mathbb{F}_{p^m} \bowtie V$.
Let p be a prime and $n \geq 4$ (if p is odd) or $n \geq 4$ even (if $p = 2$). Set $V = \mathbb{F}^n_{p^m}$ and consider

1. $q : V \to \mathbb{F}^m_{p^m}$ an isotropic quadratic form such that its polar form b is non-degenerate.

2. $A_1, \ldots, A_m \in O(V, q) = \{ A \in GL(n, p^m) \mid \forall v \in \mathbb{F}^n_{p^m} \; v q = (v A) q \}$ distinct of order p that commutes two by two.

3. $\alpha : \mathbb{F}^m_{p^m} = \bigoplus_{i=1}^m \langle \omega_i \rangle \longrightarrow GL(n, \mathbb{F}^m_{p^m})$ a group homomorphism such that $\omega_i \alpha = A_i$ (α is clearly injective).

Then b and α are compatible and we may consider the radical brace over $\mathbb{F}^m_{p^m}$ asymmetric product $\mathbb{F}^m_{p^m} \ltimes \circ V$.
Let p be a prime and $n \geq 4$ (if p is odd) or $n \geq 4$ even (if $p = 2$). Set $V = \mathbb{F}_{p^m}^n$ and consider

1. $q : V \to \mathbb{F}_{p^m}$ an isotropic quadratic form such that its polar form b is non-degenerate.

2. $A_1, \ldots, A_m \in O(V, q) = \{ A \in GL(n, p^m) \; | \; \forall v \in \mathbb{F}_{p^m}^n \; \; v q = (v A) q \}$ distinct of order p that commutes two by two.

3. $\alpha : \mathbb{F}_{p^m} = \bigoplus_{i=1}^m \langle \omega_i \rangle \longrightarrow GL(n, \mathbb{F}_{p^m})$ a group homomorphism such that $\omega_i \alpha = A_i$ (α is clearly injective)

Then b and α are compatible and we may consider the radical brace over \mathbb{F}_{p^m} asymmetric product $\mathbb{F}_{p^m} \bowtie V$.
Let p be a prime and $n \geq 4$ (if p is odd) or $n \geq 4$ even (if $p = 2$). Set $V = \mathbb{F}_p^n$ and consider

1. $q : V \to \mathbb{F}_p^n$ an isotropic quadratic form such that its polar form b is non-degenerate.

2. $A_1, \ldots, A_m \in O(V, q) = \{ A \in GL(n, \mathbb{F}_p^n) \mid \forall v \in \mathbb{F}_p^n \quad vq = (vA)q \}$ distinct of order p that commutes two by two.

3. $\alpha : \mathbb{F}_p^m = \bigoplus_{i=1}^m \langle \omega_i \rangle \longrightarrow GL(n, \mathbb{F}_p^n)$ a group homomorphism such that $\omega_i \alpha = A_i$ (α is clearly injective)

Then b and α are compatible and we may consider the radical brace over \mathbb{F}_p^n asymmetric product $\mathbb{F}_p^n \bowtie \circ V$.
Generalization of Hegedűs’ subgroups (I)

Let p be a prime and $n \geq 4$ (if p is odd) or $n \geq 4$ even (if $p = 2$). Set $V = \mathbb{F}_{p^m}^n$ and consider

1. $q : V \rightarrow \mathbb{F}_{p^m}$ an isotropic quadratic form such that its polar form b is non-degenerate.

2. $A_1, \ldots, A_m \in O(V, q) = \{ A \in GL(n, p^m) : \forall v \in \mathbb{F}_{p^m}^n \ vq = (vA)q \}$ distinct of order p that commutes two by two.

3. $\alpha : \mathbb{F}_{p^m} = \bigoplus_{i=1}^m \langle \omega_i \rangle \rightarrow GL(n, \mathbb{F}_{p^m})$ a group homomorphism such that $\omega_i \alpha = A_i$ (α is clearly injective)

Then b and α are compatible and we may consider the radical brace over \mathbb{F}_{p^m} asymmetric product $\mathbb{F}_{p^m} \ltimes_{\circ} V$.
Generalization of Hegedűs’ subgroups (I)

Let \(p \) be a prime and \(n \geq 4 \) (if \(p \) is odd) or \(n \geq 4 \) even (if \(p = 2 \)). Set \(V = \mathbb{F}_{p^m}^n \) and consider

1. \(q : V \to \mathbb{F}_{p^m} \) an isotropic quadratic form such that its polar form \(b \) is non-degenerate.

2. \(A_1, \ldots, A_m \in O(V, q) = \{ A \in GL(n, p^m) | \forall v \in \mathbb{F}_{p^m} \quad vq = (vA)q \} \) distinct of order \(p \) that commutes two by two.

3. \(\alpha : \mathbb{F}_{p^m} = \bigoplus_{i=1}^{m} \langle \omega_i \rangle \longrightarrow GL(n, \mathbb{F}_{p^m}) \) a group homomorphism such that \(\omega_i \alpha = A_i \) (\(\alpha \) is clearly injective)

Then \(b \) and \(\alpha \) are compatible and we may consider the radical brace over \(\mathbb{F}_{p^m} \) asymmetric product \(\mathbb{F}_{p^m} \ltimes \circ V \).
Let X the matrix associated to $-b$ respect a fixed basis, then the regular subgroup of the affine group associated to this \mathbb{F}_{p^m}-brace is given by

$$G = \left\{ \begin{pmatrix} 1 & \sum_{i=1}^{m} \mu_i \omega_i + (v_2) \cdot q & v_2 \\ 0 & 1 & 0 \\ 0 & \left(\prod_{i=1}^{m} A_i^{\mu_i} \right) X v_2^T & \prod_{i=1}^{m} A_i^{\mu_i} \end{pmatrix} \left| \sum_{i=1}^{m} \mu_i \omega_i, v_2 \right) \in \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}^n \right\}.$$

If $m = 1$ then G becomes

$$G = \left\{ \begin{pmatrix} 1 & \mu + (v_2) \cdot q & v_2 \\ 0 & 1 & 0 \\ 0 & A^\mu X v_2^T & A^\mu \end{pmatrix} \left| (m, v_2) \in \mathbb{F}_p \times \mathbb{F}_p^n \right\}.$$

that is isomorphic to the regular subgroup constructed by Hegedűs.
Generalization of Hegedűs’ subgroups (II)

Let X the matrix associated to $-b$ respect a fixed basis, then the regular subgroup of the affine group associated to this \mathbb{F}_{p^m}-brace is given by

$$G = \left\{ \begin{pmatrix} 1 & \sum_{i=1}^{m} \mu_i \omega_i + (v_2) q & v_2 \\ 0 & 1 & 0 \\ 0 & \left(\prod_{i=1}^{m} A_i^{\mu_i} \right) X v_2^T & \prod_{i=1}^{m} A_i^{\mu_i} \end{pmatrix} \right| \left(\sum_{i=1}^{m} \mu_i \omega_i, v_2 \right) \in \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}^n \right\}.$$

If $m = 1$ then G becomes

$$G = \left\{ \begin{pmatrix} 1 & \mu + (v_2) q & v_2 \\ 0 & 1 & 0 \\ 0 & A^\mu X v_2^T & A^\mu \end{pmatrix} \right| (m, v_2) \in \mathbb{F}_p \times \mathbb{F}_p^n \right\}$$

that is isomorphic to the regular subgroup constructed by Hegedűs.
Let X the matrix associated to $-b$ respect a fixed basis, then the regular subgroup of the affine group associated to this \mathbb{F}_{p^m}-brace is given by

$$G = \left\{ \begin{pmatrix} 1 & \sum_{i=1}^{m} \mu_i \omega_i + (v_2)q & v_2 \\ 0 & 1 & 0 \\ 0 & \left(\prod_{i=1}^{m} A_i^{\mu_i}\right) Xv_2^T & \prod_{i=1}^{m} A_i^{\mu_i} \end{pmatrix} \right| \left(\sum_{i=1}^{m} \mu_i \omega_i, v_2 \right) \in \mathbb{F}_{p^m} \times \mathbb{F}_{p^m}^n \right\}.$$

If $m = 1$ then G becomes

$$G = \left\{ \begin{pmatrix} 1 & \mu + (v_2)q & v_2 \\ 0 & 1 & 0 \\ 0 & A^{\mu} Xv_2^T & A^{\mu} \end{pmatrix} \right| (m, v_2) \in \mathbb{F}_p \times \mathbb{F}_p^n \right\}$$

that is isomorphic to the regular subgroup constructed by Hegedűs.
Generalization of Hegedűs’ subgroups (II)

Let X the matrix associated to $-b$ respect a fixed basis, then the regular subgroup of the affine group associated to this \mathbb{F}_{p^m}-brace is given by

$$G = \left\{ \begin{pmatrix} 1 & \sum_{i=1}^{m} \mu_i \omega_i + (v_2)_q & v_2 \\ 0 & 1 & 0 \\ 0 & \left(\prod_{i=1}^{m} A_i^{\mu_i} \right) X v_2^T & \prod_{i=1}^{m} A_i^{\mu_i} \end{pmatrix} \left| \begin{pmatrix} \sum_{i=1}^{m} \mu_i \omega_i, v_2 \end{pmatrix} \in \mathbb{F}^{p^m} \times \mathbb{F}^{p^m}_n \right. \right\}.$$

If $m = 1$ then G becomes

$$G = \left\{ \begin{pmatrix} 1 & \mu + (v_2)_q & v_2 \\ 0 & 1 & 0 \\ 0 & A^\mu X v_2^T & A^\mu \end{pmatrix} \left| \begin{pmatrix} m, v_2 \end{pmatrix} \in \mathbb{F}^p \times \mathbb{F}^n_p \right. \right\}.$$

that is isomorphic to the regular subgroup constructed by Hegedűs.
Let X the matrix associated to $-b$ respect a fixed basis, then the regular subgroup of the affine group associated to this \mathbb{F}_{p^m}-brace is given by

$$G = \left\{ \begin{pmatrix} 1 & \sum_{i=1}^{m} \mu_i \omega_i + (v_2) q & v_2 \\ 0 & 1 & 0 \\ 0 & \left(\prod_{i=1}^{m} A_i^{\mu_i} \right) X v_2^T & \prod_{i=1}^{m} A_i^{\mu_i} \end{pmatrix} \left| \begin{pmatrix} \sum_{i=1}^{m} \mu_i \omega_i, v_2 \end{pmatrix} \right. \in \mathbb{F}_{p^m} \times \mathbb{F}_{p^m} \right\}.$$

If $m = 1$ then G becomes

$$G = \left\{ \begin{pmatrix} 1 & \mu + (v_2) q & v_2 \\ 0 & 1 & 0 \\ 0 & A^\mu X v_2^T & A^\mu \end{pmatrix} \left| \begin{pmatrix} m, v_2 \end{pmatrix} \right. \in \mathbb{F}_p \times \mathbb{F}_p \right\}$$

that is isomorphic to the regular subgroup constructed by Hegedűs.
Thank you for your attention.