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Yang–Baxter Equation two-dimensional
integrable systems

quantum groups
R12R13R23 = R23R13R12

Tetrahedron Equation three-dimensional
integrable systems

Pentagon Equation S12S23 = S23S13S12

appear in various context

Heisenberg double
∼ Drinfeld double

{f-d Hopf algebra}↔ {PE}

Hilbert space
(multiplicative operator)

braided category
(fusion operator)

plays crucial

role in

leads torecall

Zamolodchikov

Maillet
leads to

Kash
aev

Militaru
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THE PROBLEM AND OUR AIM

Drinfeld Study set-theoretic version of YBE
Set-theoretic solutions of PE received a large interest

[Baaj Skandalis] [Jiang Liu]
[Kashaev] [Kashaev Reshetikhin]

2020 The study of set-theoretic solutions of PE form a pure
algebraic viewpoint

[Catino, Mazzotta, Miccoli]
[Catino, Mazzotta, Stefanelli]

Description of solutions of the Pentagon Equation
Problem

Description of all involutive solutions of the Pentagon Equation
Aim
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SET-THEORETIC SOLUTIONS OF THE PE
DEFINITION

S a set s ∶ S × S→ S × S

(S,s) is a set-theoretic solution of the Pentagon Equation if

s23s13s12 = s12s23

s12 = s × id s23 = id × s s13 = (τ × id)(id × s)(τ × id)

▸ (S,s) is finite if S is a finite set ▸ (S,s) is bijective if s is a bijec-
tive map

▸ (S,s) bijective of finite order if
∃n > 0 such that sn

= id
▸ (S,s) is involutive if s2

= id
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SET-THEORETIC SOLUTIONS OF THE PE
A CHARACTERIZATION

Write s(x, y) = (x ⋅ y, θx(y)) then
(S,s) is a solution of
the PE

⇐⇒ (x ⋅ y) ⋅ z = x ⋅ (y ⋅ z)
θx(y) ⋅ θx⋅y(z) = θx(y ⋅ z)
θθx(y)θx⋅y = θy

Hence, (S, ⋅ )must be a semigroup.
We denote the multiplication in S as a concatenation, i.e., x ⋅ y = xy.
(S,s) is a solution of
the PE

⇐⇒ t = τsτ ∶S × S→ S × S satisfies
t12t13t23 = t23t12

↑

t is called a solution of the Reversed Pentagon Equation (RPE).

(S,s) is a bijective
solution of the PE

⇐⇒ s−1 satisfies the RPE
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SET-THEORETIC SOLUTIONS OF THE PE
EXAMPLES

▸ S a semigroup ▸ f ∈ End(S), f2 = f
s(x, y) = (xy, f(y)) is a solution of the PE.

▸ S a set ▸ f,g ∈Map(S,S)
f2 = f , g2

= g, fg = gf Ô⇒ s(x, y) = (f(x),g(y)) solution of PE and RPE

▸ G group with exp(G) <∞ ▸ E = {1, . . . ,n}
▸ σ ∈ Sym(n) s.t ∀i ∈ E σσ(i)+1

= σi
▸ S = E ×G

s((i,a), (j,b)) = ((i,ab), (σi
(j),b))

is a bijective solution of the PE s.t. order(s) = lcm(order(σ), exp(G))
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SOME GENERAL RESULTS ON BIJECTIVE SOLUTIONS
▸ (S,s) bijective solution of the PE

∀x, y ∈ S, ∃u, v ∈ S s.t. s(u, v) = (x, y)

uv = x

S = S2

y = θu(v)

θyθx = θθu(v)θuv = θv ∈ T

T is a semigroup

▸ (S,s) bijective solution of the PE of finite order
∃n > 0 s.t. sn

= idÔ⇒ ∀x, y ∈ S ∃z ∈ S s.t. xyz = xÔ⇒ ∀x, y∶ x ∈ SyS.
Hence, S is a simple semigroup.
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SOME GENERAL RESULTS ON BIJECTIVE SOLUTIONS OF PE
LEFT GROUPS

▸ E is a left zero semigroup ▸ G a group
E ×G is called left group

(i,g)(j,h) = (i,gh),∀i, j ∈ E,g,h ∈ G

Every left group is left simple, and is right cancellative.

A semigroup E is called a left zero semigroup if xy = x for all x, y ∈ E.
Remark

▸ (S,s) a solution of the PE and the RPE ← E.g. when (S, s) is involutive.

If s is bijective of finite order then S is a left group.
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SOLUTIONS OF PE OVER A GROUP

▸ G a group
▸ s(x, y) = (xy, y) is a bijective solution of the PE.

↑

This is the unique bijective solution

The order of s is exp(G).
↓

s is involutive ⇐⇒ exp(G) = 2 ⇐⇒ G is an elementary abelian 2-
group
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INVOLUTIVE SOLUTIONS OF THE PE

▸ E a left zero semigroup
▸ (E,sE) an involutive solution of the PE on E

sE(i, j) = (i, θi(j))
▸ G an elementary abelian 2-group
▸ (G,sG) the unique bijective solution of the PE on G

sG(x, y) = (xy, y))
▸ S ∶= G × E

the map s ∶ S × S→ S × S defined by

s((i, x), (j, y)) = ((i, xy), (θi(j), y))

is an involutive solution of the pentagon equation denoted by
(E,sE) × (G,sG).
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INVOLUTIVE SOLUTIONS OF THE PE
AS DIRECT PRODUCT OF SOLUTIONS

▸ (S,s) an involutive solution of the PE
▸ ∃E a left zero semigroup
▸ ∃G an elementary abelian 2-group
▸ ∃(E,sE) an involutive solution of the PE on E

s.t.
(S,s) = (E,sE) × (G,sG),

where sG is the unique bijective solution of the PE on the group G.

Moreover, T = {θx ∶ x ∈ S} is an elementary abelian 2-group.
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INVOLUTIVE SOLUTIONS OF THE PE
A REDUCTION

Hence, each involutive solution of the PE (S,s) is composed of
solutions sE and sG on a left zero semigroup E and on an elementary
abelian 2-group G.

The solution sG is unique.
↓

the description of all involutive set-theoretic solutions (S,s) of the PE
on a semigroup S can be reduced to the description of solutions on a
left zero semigroup.
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THE RETRACTION OF INVOLUTIVE SOLUTIONS OF PE
DEFINITION

▸ (S,s) an involutive solution of the PE.
Define the equivalence relation ∼ on S called retraction

x ∼ y ⇐⇒ θx = θy.

From the description of involutive solutions we get
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IRRETRACTABLE INVOLUTIVE SOLUTIONS OF THE PE
THE RETRACT IS IRRETRACTABLE

▸ (S,s) an involutive solution of PE.
(S,s) is irretractable if (S,s) = Ret(S,s).

θx = θy ⇐⇒ θx(z) = θy(z) for all z ∈ S
⇐⇒ θθx(z) = θθy(z) for all z ∈ S
⇐⇒ θxθz = θyθz for all z ∈ S
⇐⇒ θx = θy

⇐⇒ x = y.

▸ Ret(S,s) is an irretractable involutive solution of the PE.
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IRRETRACTABLE INVOLUTIVE SOLUTIONS OF THE PE
THE IRRETRACTABLE SOLTION IS “UNIQUE”

▸ (A,+) an elementary abelian 2-group.
▸ Define t∶A × A→ A × A by t(x, y) = (x, x + y).

Then (A, t) is an irretractable involutive solution of the PE.

▸ (S,s) an irretractable involutive solution of PE
▸ ∃+ s.t. (S,+) is an elementary abelian 2-group
▸ and s(x, y) = (x, x + y)

The solution (A, t) on an elementary abelian 2-group (A,+) will be
denoted as (A, tA).
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INVOLUTIVE SOLUTIONS OF PE
THE EXTENSIONS

▸ (A,+) an elementary abelian 2-group
▸ (A, tA) the irretractable involutive solution of the PE on A
▸ X a non-empty set
▸ σ∶A→ Sym(X)
▸ S = X × A

Define on S × S

s((x,a), (y,b)) = ((x,a), (σa+bσ−1b (y),a + b)).

▸ (S,s) is an involutive solution of the PE.
▸ Ret(S,s) = (A, tA).

Such a solution (S,s) is called extension of (A, tA) by X and σ and
denoted by ExtσX(A, tA).
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INVOLUTIVE SOLUTIONS OF PE
SOLUTIONS AS EXTENSIONS

▸ S a left zero semigroup
▸ (S,s) an involutive solution of the PE
▸ ∃(A,+) an elementary abelian 2-group
▸ ∃X an non-empty set
▸ ∃σ∶A→ Sym(X)

s.t S = X × A and (S,s) = ExtσX(A, tA)



18

INVOLUTIVE SOLUTIONS OF PE
SOLUTIONS AS EXTENSIONS

▸ S a left zero semigroup
▸ (S,s) an involutive solution of the PE
▸ ∃(A,+) an elementary abelian 2-group
▸ ∃X an non-empty set
▸ ∃σ∶A→ Sym(X)

s.t S = X × A and (S,s) = ExtσX(A, tA)



18

INVOLUTIVE SOLUTIONS OF PE
SOLUTIONS AS EXTENSIONS

▸ S a left zero semigroup
▸ (S,s) an involutive solution of the PE
▸ ∃(A,+) an elementary abelian 2-group
▸ ∃X an non-empty set
▸ ∃σ∶A→ Sym(X)

s.t S = X × A and (S,s) = ExtσX(A, tA)



19

INVOLUTIVE SOLUTIONS OF PE
A DESCRIPTION

▸ (S,s) an involutive solution of the PE.
▸ ∃A,G elementary abelian 2-groups
▸ X a non-empty set
▸ σ∶A→ Sym(X) a map

s.t. S = X × A ×G and

(S,s) = ExtσX(A, tA) × (G,sG)

▸ (A, tA) is the unique irretractable invulutive solution of PE on A
▸ (G,sG) is the unique bijective solution of PE on G.

Moreover, Ret(S,s) = (A, tA)
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INVOLUTIVE SOLUTIONS OF PE
ISOMORPHIC EXTENSIONS

When are two extensions isomorphic as solutions?
▸ (S,s) and (S′,s′) solutions of PE
▸ f ∶ S→ S′ a map

f is an isomorphism if f is bijective and (f × f)s = s′(f × f)
▸ (A,+) an elementary abelian 2-group
▸ X a non-empty set
▸ σ∶A→ Sym(X) and ρ∶A→ Sym(X)maps

Then ExtσX(A, tA) and ExtρX(A, tA) are isomorphic.
×
×
Ö

{involutive solutions} bijective
←ÐÐÐ→ {X × A ×G ∣ X ≠ ∅

A,G elem. ab. 2-group }
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