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Extensions
1933 _— 1935
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abelian 2-group
[Wielandt]
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» 1979. Finite simple primitive groups with a cyclic regular
subgroup

(by classification of finite group) [Fit]

» 1982. Insolvable primitive permutation groups with a cyclic
regular subgroup

[Gorenstein]
» 2000. A non-abelian regular subgroup of particular affine group

0 [Hegeduis]
In AGL, there are regular abelian subgroups
other than the translation group
» 2003. Classify finite primitive permutation groups with an
abelian subgroup

[Cai Heng Li]
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PRIMITIVE GROUP

X a set G < Sym (X) xeG

X6 := {7 (x)| TeG} Gy:={m| meG,m(x)=x}
1 1
orbit of x stabilizer subgroup of x

» G is transitive on X if there exists a unique orbit
0
VX, yeX 3ImreGstnm(x)=y

» G is primitive if G is transitive and there is no partition of X
preserved by G except for the trivial partitions

|

the partition with a single part, and the partition into singletons

E.g. Sym (n) is primitive for any n € N.
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THE AFFINE GROUP OF A VECTOR SPACE

If V is a vector space over a field F the group

AGL(V):= (GL(V), T(V))
[
linear group of V. group of translation of V

It is easy to see that
» T(V) <AGL(V)
»GL(V)nT(V)=1 <~ AGL(V)=GL(V)xT(V)
» AGL(V) =GL(V)T(V)

AGL(V) can be identified with the set of all pairs (a, «) with a ¢ V and
a € GL (V) with respect to the product

(a,a)(b,8) = (@+a(b),ap).
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REGULAR SUBGROUP OF AGL(V)

G < AGL(V) isregular if, for all x,y € V, there exists a unique 7 € G
such that 7 (x) = y.

G<AGL(V)regular <= 3¢:V->GL(V),ar ¢,s.t.

Gadp = Dasrg,(by @Nd
G={(a,¢a)| acV}

E.g. The translation group T(V) = {(a,id) | a € V} is an abelian
regular subgroups of AGL(V).

If T is a regular subgroup of AGL (V) then its conjugate by an
element of GL (V) is still a regular subgroup.



EMBEDDING OF AGL(N, F) INTO GL(N +1,F)

» V an n-dimensional vector (n € N) space over F
» fix a basis of V
» define the group monomorphism

(67

0:AGL(n,F) — GL(n+1,F), (a,a)~ (g) a)

AGL(n,F) acts on the right on the set of affine vectors
Q:={(1,v)| veF}.



EMBEDDING OF AGL(N, F) INTO GL(N +1,F)

If T is a regular subgroup of AGL (n, F) then there exists
¢:V—>GL(V) st

T={(a,¢a)| acV}.
Hence, if we consider AGL(n,F) — GL (n+1,F), for every a € F" there
is a unique element of T that has (1,a) as first row:

{fo 2]}
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REGULAR SUBGROUPS OF AGL(2,F)

Let F be a field and o an endomorphism of the additive group of F.

Then
1T x y
T:=510 1 o(X)|| x,yeF
0 0 1

is a regular subgroup of the affine group AGL(2,F).

In particular, T is abelian if and only if o is linear, i.e., (xy)o = xa(y).



BRACES OVER A FIELD

Let F be afield, (B, +) a vector space over F and o an operation over B
such that (B, o) is a group. We say that (B, +,0) is an F-brace (or a
brace over the field F) if the following relations hold
ao(b+c)+a=aob+aoc
p(aob)=ao (ub)+(n-1)a.
E.g. Let (B, +) be a vector space over F. Defineaob = a + b, then
(B, +,0) is an F-brace.

If B is a JEBLIEEIEIEIEY over F and we consider the adjoint
operationaob:=ab+a+b. Then (B, +,0) is an F-brace.

#'Remark
& An algebra B is radical if B with respect to the adjoint operation a o b is a group.

12



F-BRACES AND REGULAR SUBGROUPS
CATINO, RIZZO (2019)

» B avector space over a field F

» FB the class of F-braces with underlying vector space B

» R the set of all regular subgroups of AGL (B) the affine group of B
It holds that

» If B° = (B,+,0) e FB,then Ng- := {(a,);) | ae B} ¢ R.

» Themap f: FB - R,B° — Ng- is a bijection.

Moreover

isomorphic F-braces «— regular subgroups of AGL (B)
conjugated under the action of GL (B).

13



CARANTI, DELLA VOLTA, SALA (2006)

' Remark

If B is a commutative F-brace then B is a commutative radical algebra with respect
to the multiplication definedbyab=aob-a-b.

Hence, as direct consequence of the previous result, we have

COMMUTATIVE ALGEBRAS AND REGULAR SUBGROUPS

» B a vector space over a field F

» RA the class of commutative radical algebras with underlying
vector space B

» AR the set of all abelian regular subgroups of AGL (B) the affine
group of B

It holds that
» If B° = (B,+,0) € RA, then Ng. := {(a,\s) | ae B} ¢ AR.
» Themap f: RA - AR,B° — Nj. is a bijection.

14



F-BRACES AND REGULAR SUBGROUPS

F. CATINO, R. RIZZO (2009) - PROOF

QyProof (sketch)
B° = (B, +,0) an F-brace. For any x ¢ B, define the map

M:B—B, y— -Xx+Xo}y.

> (%, M) € AGL (B).

» Themap f: B - AGL(B),x — (x, \y) is a group

Hence, Ng- is a regular subgroup of AGL(V).

> Note that (x, Ao) (¥, ) = (X + A (1), Ay ) = (X 0¥, Axoy ).

monomorphism from (B, o) into AGL(B) and f (B) = Ng..

15



F-BRACES AND REGULAR SUBGROUPS

Conversely, if T is a regular subgroup of AGL(B), then
T={(x,X) | xeB}.
Define the following operation on B
VX, yeV, Xoy:=x+A(y)

Therefore V° = (V, +,0) is an F-brace and Ng. = T.
Then

» Vo Ve FB
» ¢:V* - V* be an isomorphism, in particular ¢ € GL(B)
» Ngo = {(x,A;)| xeB}and Ng- = { (x,\;) | xeB}.
Itfollows that (0, ¢) (x, A7) (0,¢7") = (¢ (), A7) = (¢ (), AL, )-

16



F-BRACES AND REGULAR SUBGROUPS

Finally,
> Nq:= {( (1))|a € V} Ny = {( m)‘a € V} be regular
subgroups of AGL (V)
» ¢ e GL(V) suchthat (0,)N; (0,¢07") =N,
» Setaob:=a+¢{” (b)andaxb:=a+ > (b)
Then ¢ is an isomorphism from (V, +,0) into (V,+, %), i.e., the left

semi-braces corresponding to Ny and N, respectively are isomor-
phic.

17



THE INTERSECTION WITH THE TRANSLATION GROUP

» Fafield » V°=(V,+,0) aleft F-brace
T (V) the translation group » Ny =f(V°) <AGL (V)
of V regular associated with V°
Then

T(V)nNye ={(a,idy)|acV,Vvb eV a+b=aobh}.
QProof
T(V):={(a,idy) | aeV}
|
aeT(V)NnNye «— Aa=idg <= VbeVaob=a+b

#'Remark
In braces terms, the set
Soc(V):={a|acV,VbeVa+b=aob}

is an extensively study substructure know as socle

18



F-BRACES WITH NON-TRIVIAL ANNIHILATOR

» F afield » V an F-brace
The F-annihilator of V is the set

Anng(V):={a|aeVst (na)ob=(ua)+b=bo(ua) VbeBVueF}

#Remark
§ > Anng (V) is an ideal and a subspace of V

» V:=V/Anng (V) is a left F-brace
If (T,+) is a vector space over F,amap 6 :V x V — T such that
» 0 (a,ub+vc) =pb(a,b)+vo(a,c),
» §(aob,c)+06(a,b)=0(b,c)+0(a,boc),
is called 2-cocycle of left F-brace V with valuesin T.

19



F-BRACE WITH NON-TRIVIAL ANNIHILATOR

» F afield » V an F-brace
» TanF-space » 0:V xV — T a2-cocycle of V with valuesin T

Define

p(a,v) = (na,pv)
(a,v) + (b,w):=(a+b,v+w)
(a,v)o(b,w):=(aob,v+w+0(a,b)),

Then (V x T, +,0) is a left F-brace, called a Hochschild product of the
F-brace V by T (via 6).

20



F-BRACE WITH NON-TRIVIAL ANNIHILATOR

Conversely

» F afield » V an F-brace with Anng (V) = {0}

» T:=Anng (B)
Then there exists a 2-cocycle 6 of the F-brace V := V/T with values in
T s.t. V is isomorphic to the Hochschild product of V by V (via 6).
QProof (sketch)
Set _

» T:=Anng (V) » V:=V/Anng (V)

» 7 : B — Bthe projection map
Choose a linearmaps: V - Vs.t. 7 (s (b)) = b.
The map 6 : V x V - T defined by

0(51,52) = -8 (51 052) +S(E1) 03(52),

is a 2-cocycle. Consider the F-brace Hochschild product of V by T (via 6).
Finally, ¢ : Vx T — V, defined by v (b, i) = s (b) +i, is an isomorphism from
the Hochschild product of V by T (via 6) into V.

21



F-BRACE WITH NON-TRIVIAL ANNIHILATOR

» N the zero 1-dimensional algebraover F  » 7€ End (F,+)
» (e1) abasisof N
The map 6 : N x N — F such that

6 (x1€1,y1€1) := 7 (X1) Y1

is a 2-cocycle of the left F-brace N, but it is a 2-cocycle of the
F-algebra N if and only if 7 is linear.

Conversely, if § a 2-cocycle on N, as left F-brace then there exists
7 € End (F, +) such that

0 (x1€1,y1€1) = 7 (X1) Y1

= ¢ are the unique 2-cocycles of a 1-dimensional zero algebra

22



F-BRACE WITH NON-TRIVIAL ANNIHILATOR

Hence, all regular subgroups of AGL (FZ) with non trivial intersection
with the translation group are given by
X,yeF } ,

T x vy
{(0 T 7(x) )
0 0 1

for every 7 automorphism of (F, +).

23



HEGEDUS’ SUBGROUPS

» p aprime
» Ifp=2,assumen=3,orn>5 » Ifpisodd, assumen >3 odd

Then the affine group AGL(n,F,) has a regular subgroup which
contains no translations other than the identity.

A\
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HEGEDUS’ SUBGROUPS

» p aprime
» Ifp=2,assumen=3,orn>5 » Ifpisodd, assumen >3 odd

Then the affine group AGL(n,F,) has a regular subgroup which
contains no translations other than the identity.

QProof (sketch)
E I[i‘g‘1 - IFp a non-degenerate quadratic form

> b:F" xFp~' — F, the symmetric bilinear form associated to
q

» X the matrix associated to b with respect to a fixed basis
(i.e., g(x+y) =q(v) +q(w) +vXwT)

» A an orthogonal non-singular (n — 1) x (n — 1)-matrix
(i.e, XAT = A7'X) of order p such that q (v) = q(vA)

24



HEGEDUS’ SUBGROUPS

Then the set

1 q(v) %
H = 0 1 0
07 AMXyT AM

is a regular subgroup of the affine group AGL(n, p) that has trivial
intersection with the translation group.

n—1
meFp,vel, }

In particular, this group is not abelian. In fact, if V is a finite di-
mensional vector space and T is an abelian regular subgroup of
the affine group AGL(V), then T has nontrivial intersection with the
translation group.

25



THE ASYMMETRIC PRODUCT OF ZERO F-BRACES

CATINO, I.C., STEFANELLI (2016)

» F afield of characteristic p
» H, N zero F-braces (i.e., s.t. aob=a+b)

» 3:N — Aut(H) a group homomorphism from (H, o) into
Aut (H, +,0)

» b:HxH - N abilinear and symmetric map (ifp=2)
» g a quadratic form and b its polar form (ifp=2)
that satisfy

b (M, h2) = ("M,"h2) (if p = 2)
qa("h) =q(h) (ifp=2)

26



THE ASYMMETRIC PRODUCT OF ZERO F-BRACES

The sum, the multiplication, and the scalar multiplication

(h1,m) + (h2,n2) := (h1 + hy, b (hi,h2) +n1+ny)
(h1,n) o (hg,n2) := (h10™hy,nq0ny)

1 (h,n) _(uh “("2 D (h, h)+un) (ifp +2)

p(h,n) = (ph, p(p+1)q (h) + pn) (ifp=2)

define a structure of F-brace over H x N called the Asymmetric
Product H by N and denoted by H x, N.

27



THE INTERSECTION WITH THE TRANSLATION GROUP

We check the intersection of the regular subgroup associated to
V := H x, N with the translation group T (V) via the socle:

NynT(V)={(a,idy)]| aeSoc(V)}.
Then
(h,n) €eSoc(Hx,N) < heradband g (n) =idy
whereradb={h| heH,VkeHb(hk)=0}.

28



GENERALIZATION OF HEGEDUS" SUBGROUPS

p a prime, m ¢ N. If one of the following conditions hold
» podd, m=Tandn>3;
» podd,m>1andn > 4;
»p=2,m=1andn=3o0rn>5;
»p=2,m>1andn=4n=60rn>8,

then the affine group AGL (n +1,p™) contains a regular subgroup
having trivial intersection with the translation group.

29



GENERALIZATION OF HEGEDUS" SUBGROUPS

QProof (sketch)
m=1 = 3q:F) - Fp s.t. its polar
n >3 and p odd form b is non-degenerate

orn>2,nevenandp =2

pl10(V,q) — 3Ac0(V,q)of orderp

Define

B:Fpy->TFpm st B(1)=A.
Consider [y x, [ its multiplicative group is a regular subgroup of
AGL (n+1,F,) and since g is faithful and b is non-degenerate its
intersection with the translation group is trivial.
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GENERALIZATION OF HEGEDUS" SUBGROUPS

m>1 = 3q:Fp» > Fpm an isotropic
n >4 and p odd s.t. its polar form b is non-
orn>4,nevenandp =2 degenerate

JAq,...Am € 0(V,q) of order p that pairwise commute
Define the group homomorphism

m

ﬁ : ]Fpm = G?(w;) — GL(n,Fpm)
i=
s.t. ﬁ (w,-) =A;.
The multiplicative group of the left Fyn-brace Fpm », [y is a regu-
lar subgroup of the affine group. Since j is faithful and b is non-
degenerate this subgroup has trivial intersection with the transla-
tion group.

31



GENERALIZATION OF HEGEDUS" SUBGROUPS

p=2 m=T1landn>5
orm>1n>9,nodd

Consider the direct product of two left Fom-braces:

> B-| = ]Fg:n Ho Fzm

> By :=F22 %o Fom
where nq,n, are even nq,n, >4 suchthatni+1+n,+1=n+1.
The multiplicative group of the Fom-brace direct product is the di-
rect product of the multiplicative groups of B; and B;.

Since
Soc (By x By) = Soc (By) x Soc (B3)

the intersection of the multiplicative group of By x B, with the trans-
lation group is trivial.
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SKEW BRACES

GUARNIERI, VENDRAMIN (2017)

» B a set with two operations + and o
» (B,+)and (B,o) groups
(B, +,0) is a skew brace if the following relation holds

ao(b+c)=aob-a+aoc

In particular, if (B, +) is an abelian group, (B, +,0) is called a brace.

E.g. (B,+)agroup,defineaob:=a+b, (B,+,0) is a skew brace.
(B,+) agroup, defineaob:=b+a, (B,+,0) is a skew brace.
Every F-brace is a skew brace

An additive exactly factorizable group B (i.e., B = A + C for disjoint
subgroups A and C) is a skew brace with x oy = a +y + ¢, where
x=a+C,acAandbeB.

33



HOLOMORPH OF A GROUP

The holomorph of a group (B, +) is the group Hol (B) := B x Aut (B)
with the product given by

(a,0) (b,B) = (@+a(b), ab)

» pr;:Hol (B) —» B, (a,«) — a be the first projection
Any N < Hol (B) acts on B for all (a,«) € N and x € B via

(a,a) -x=pry((a,a) (x,idg)) =a+ a(x).
» Bagroup » Hol(B)the holomorphof B » N < Hol(B)
N is regular if for all a, b € B there exists a unique (x,x) € N s.t.

(XaX).a:b'

34



SKEW BRACES AND REGULAR SUBGROUPS OF Hol (B)

» (B,+) agroup
» SB be the class of skew left braces with additive group (B, +)
» R the set of all regular subgroups of Hol (B) the holomorph of
(B,+)
It holds that
» If B° = (B, +,0) € SB,then Ng- := { (a,\s) | a€ B} ¢ R.
» Themap f:SB - R,B° — Ng. is a bijection.

Moreover

isomorphic skew <«— Regular subgroups of Hol (B)
left braces conjugated under the action of Aut (B).
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SOLUTIONS OF THE YANG-BAXTER EQUATION

The Yang-Baxter equation is a fundamental tool in many fields such
as:

» statistical mechanics,
» quantum group theory,
» low-dimensional topology.

36



SET-THEORETICAL SOLUTIONS

[V. Drinfel’d, 1992] set-theoretical solutions or braided sets.
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SET-THEORETICAL SOLUTIONS

[V. Drinfel’d, 1992] set-theoretical solutions or braided sets.

Given X aset,amapr: X x X — X x X is a set-theoretical solution if

(rxidy) (idx xr) (r xidy) = (idx xr) (r x idx) (idx xr)

)
J

S
(

J

Reidemeister move of type Il
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SOLUTIONS OF THE YANG-BAXTER EQUATION

If Xisaset r:XxX—XxXisasolutionanda,b ¢ X,

38



SOLUTIONS OF THE YANG-BAXTER EQUATION

If Xisaset,r: XxX— X xXisasolution and a, b € X, then we denote

r(a,b) = (Xa(b),pp(a)),

where \,, pp are maps from X into itself.
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where \,, pp are maps from X into itself.

We say that ris
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SOLUTIONS OF THE YANG-BAXTER EQUATION

If Xisaset,r: XxX— X xXisasolution and a, b € X, then we denote

r(a,b) = (1. (b),pp(a)),

where \,, pp are maps from X into itself.

We say that ris

» left (resp. right) non-degenerate if \, (resp. pa) is bijective, for
every a e X;
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SOLUTIONS OF THE YANG-BAXTER EQUATION

If Xisaset,r: XxX— X xXisasolution and a, b € X, then we denote

r(a,b) = (Xa(b),pp(a)),

where \,, pp are maps from X into itself.

We say that ris

» left (resp. right) non-degenerate if \, (resp. pa) is bijective, for
every a e X;

» non-degenerate if it is both left and right non-degenerate
» involutive if r? (a,b) = (a,b), forall a,b € X.

38



SOLUTIONS OF THE YANG-BAXTER EQUATION

If Xisaset,r: XxX— X xXisasolution and a, b € X, then we denote

r(a,b) = (Xa(b),pp(a)),

where \,, pp are maps from X into itself.

We say that ris
» left (resp. right) non-degenerate if \, (resp. pa) is bijective, for
every a e X;
» non-degenerate if it is both left and right non-degenerate
» involutive if r? (a,b) = (a,b), forall a,b € X.

E.g. Theflip: r(x,y) = (y,x).
If Xis asetand o, 7: X - X are bijection s.t. o7 = 7o then
r(x,y) = (o(y),7(x)) is a solution.
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SOLUTION ASSOCIATED WITH A SKEW BRACES

GUARNIERI, VENDRAMIN (2017)

(B, +,0) a skew brace.
The map r: B x B — B x B defined by

rg(a,b):=(-a+aob,(a +b) ob)

where a~ denotes the inverse of a in (B, o), is a non-degenerate
solution to the Yang-Baxter equation. Moreover

r?=id < (B,+) is abelian
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SKEW BRACE ASSOCIATED WITH A SOLUTION

SMOKTUNOWICZ, VENDRAMIN (2018)

(X,r) a non-degenerate solution.
Define the structure group

G (X,r) =(X| xy = uv wheneverr(x,y) = (u,v)).
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(X,r) a non-degenerate solution.
Define the structure group «v Etingof, Schedler & Soloviev
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SMOKTUNOWICZ, VENDRAMIN (2018)

SKEW BRACE ASSOCIATED WITH A SOLUTION

(X,r) a non-degenerate solution.
Define the structure group

G (X,r) =(X| xy = uv wheneverr(x,y) = (u,v)).

Then there exists a unique skew brace structure over G (X,r) such
that its associated solution rg(x ) satisfies

rocxn (exe) = (exo)r,

where . : X - G(X, r) is the canonical map.
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Grazie per l'attenzione!
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