About me

Currently, I am a postdoctoral research fellow at the University of Exeter (UK). I am working on the EPSRC project: Hopf-Galois Theory and Skew Braces (PI: Prof. N. Byott).

Previously, I was a postdoctoral researcher at the Vrije Universiteit Brussel (VUB) in the group ALGB: Algebra, Incidence Geometry (Group and Semigroup Theory) headed by Prof. E. Jespers.

I completed my PhD in 2017 at the University of Salento under the supervision of Prof. F. Catino. During my PhD, I was a visiting PhD student at the University of Warsaw in the group of Algebra and Number Theory headed by Prof. J. OkniĊ„ski.

My PhD thesis focuses on studying a novel algebraic structure, namely semi-brace, and its connection with set-theoretical solutions of the Yang-Baxter equation.

My research interest focuses on studying algebraic structures associated with discrete versions of some equations in mathematical physics, such as the Yang-Baxter equation and the Pentagon equation. I am mainly interested in algebraic structures such as skew braces, trusses and generalisations that organise, classify and help to find solutions of the Yang-Baxter equation and the Pentagon equation with given properties.

Dr. Ilaria Colazzo

  • (2021– ) Postdoc, Exeter
  • (2019–21) Postdoc, VUB
  • (2017–8) Postdoc, UniSalento
  • (2017) Ph.D. Maths, UniSalento
  • (2009) B.S. Maths, UniSalento


28 July, 2023

Finite idempotent set-theoretic solutions of the Yang-Baxter equation accepted for publication in Int. Math. Res. Not.

14 June, 2023

A provisional schedule of the conference Group, rings and Yang-Baxter 2023 is online

11 May, 2023

New preprint on arxiv: Structure algebras of finite set-theoretic solutions of the Yang-Baxter equation.

... see all News

Research Interests

Set–theoretical solutions of the Yang–Baxter equation
Skew braces, trusses and generalisations
Regular subgroups of the holomorph
Hopf–Galois extensions
Set–theoretical solutions of the pentagon equation